TEST 2

QUESTION 1

[Marks 12]

- (a) A certain charge Q is divided into two parts q and Q q, which are then separated by a certain distance. What must q be in terms of Q to maximise the electrostatic repulsion between the two charges?
- (b) A thin ring of radius R carries charge q distributed uniformly around its circumference.Determine the electric field at a point P, a distance z from the plane of the ring along its central axis.

(c) A semi-infinite cylinder of radius R is charged uniformly with a surface charge density σ . Calculate the electric field at the point P on the axis at the end of the cylinder.

[Marks 12]

- (a) Write down the formula for Gauss' law and define all symbols used.
- (b) Starting from Coulomb's law and using a sphere as an imaginary surface show that Gauss' law is valid for a point-like charge.
- (c) Consider a uniformly charged infinite insulating plate of thickness h.

The volume charge density is ρ .

- Using Gauss' law find the electric field as a function of y. Clearly show the imaginary surface you use to apply Gauss' law.
- (ii) Plot the electric field as a function of y.

[Marks 11]

(A) Two metal plates of area A are separated by a small distance d forming a parallel plate capacitor. The applied voltage between the plates is V.

- (a) Determine the electric field between the plates.
- (b) Determine the electric charges on each plate.
- (c) Determine the capacitance of the system.
- (B) A metal slab of width d/3 is introduced between the plates as shown in the figure.

- (a) Determine the electric fields at all points between the plates.
- (b) Determine electric charges on both plates and on the surfaces of the metal slab.
- (c) Determine the capacitance of the system.

[Marks 11]

- (a) (i) Show that equivalent capacitance of two capacitors C_1 and C_2 connected in parallel is $C_{eq} = C_1 + C_2$.
 - (ii) Show that equivalent capacitance of two capacitors C_1 and C_2 connected in series is

$$C_{eq} = \frac{C_1 C_2}{C_1 + C_2}$$

(iii) Show that equivalent inductance of two well separated inductors L_1 and L_2 connected in parallel is

$$L_{eq} = \frac{L_1 L_2}{L_1 + L_2}.$$

- (iv) Show that equivalent inductance of two well separated inductors L_1 and L_2 connected in series is $L_{eq} = L_1 + L_2$
- (b) Determine equivalent capacitance of the circuit.

[Hint: It is not enough just to apply results of (a)i and (a)ii (capacitors in parallel and in series). You need an additional argument.]

QUESTION 5 [Marks 12]

- (A) Write down the formula for the Biot-Savart law and define all symbols used.
- (B) Write down the formula for Ampere's law and define all symbols used.
- (C) An infinite wire makes a loop of radius R (see Figure). The wire carries the electric current i.
 Calculate the magnetic field at the point O at the centre of the loop.
 I.Hint: This field is a combination of the field of

[*Hint:* This field is a combination of the field of the infinite straight wire and the field of the loop.]

[Marks 12]

- (a) (i) Using Faraday's law define what is meant by the inductance L of a coil.
 - (ii) Derive an expression for the total stored magnetic energy in an inductance L which is carrying a current i.
- (b) A magnetic coil can withstand a maximum current i_m. At a larger current the coil is mechanically destroyed by the magnetic force. A similar coil is made from a material which is 3 times mechanically stronger. Determine the maximum current I_m that this coil can withstand. Explain your answer.
- (c) A plasma accelerator consists of two metal rails in a magnetic field perpendicular to the plane (see figure).

The plasma discharge is ignited at the beginning of the accelerator and then an external power source maintains a DC current i through the system. The mass of the plasma cloud is m.

The parameters of the system are the following: length L=1 m, distance between the rails $\ell=0.1$ m, current i=10 A, field B=1 T. The plasma discharge consists of 10^{13} Hydrogen ions, the mass of a single ion is $m_H=1.6710^{-27}$ kg.

- (i) Determine the acceleration of the plasma discharge.
- (ii) Determine the final velocity of the discharge.