
SOLUTIONS 1231 T1 
 

Q1. SHM Vibrating Strip 
 

(a)(i) For SHM, 
 
   y = Asin(ω t + φ ) 
 

for amplitude A and angular frequency ω. Set φ = 0.   
 
(ii) The velocity is given by  
 

   v = dy

dx
= ωA cosωt  

 

The maximum speed vm  occurs when cos = 1,   

 
∴ vm  = ωA  with ω = 2πυ , ν = 5Hz  
 
    vm  = 2π.5.(10.10−3)ms−1   

 

= 0.314 ms
− 1 

 
The acceleration a in SHM is given by  

 

        a =
d2 y

dt
2 = −ω 2Asin ωt  

 
 
The maximum value of the acceleration occurs when sin=1 with magnitude 
 

am = ω 2 ym = ω 2A  

 
      ∴  am = ω 2A = (2πυ)2 A  

 

  = (2π.5)2.10 −2 ms −2  = 9.87ms
− 2 



(b) Bead mass = 2 g, SHM frequency = 3 Hz. 
 
The acceleration (from part (a)) is  
 
   am = ω 2A = (2πυ)2 A  

 
The downward  force on the bead due to gravity, Fg , is 

 
Fg = mg = ( 2x10

−3
).9.8 = 0.0196 N  

 
The bead will begin to lose contact when am ≥ Fg, or 

 

  (2πν)
2

A ≥ 0.0196  
 

   A ≥
0.0196
(2π.3)2  

 
  A ≥ 5.5x10−5m  = 0.055mm 

 



2. U-tube oscillations.  
 
The required diagram is: 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

Where x is the displacement from equilibrium in either arm of the U-tube, and 2h is the 
total column length of liquid.  
 
When liquid is displaced by x, l.h.s. moves O→A, r.h.s. moves C →B  

 
Excess pressure on whole liquid = excess height x density x g  = 2xρg  
 
Since pressure = force per unit area,
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force on liquid = pressure x cross-sectional area of tube 
 = 2 xρgA  

(ρ=density of liquid, A=cross-sectional area of tube) 
 

Excess pressure causes (restoring) force which accelerates liquid ⇒Newton’s  
2nd Law: F=ma. 
 
Total mass of liquid in tube = 2hAρ  (2h is total length of liquid column) 

 
So F=ma becomes: 
 
     −(2xρgA) = (2hAρ)(a) 

 
    force     mass  x   acceleration 
(minus sign indicates acceleration directed towards equilibrium position) 
 

Rearranging this we have: a = −
g

h
x = −ω 2 x   

where ω2x  is the acceleration in SHM with frequencyω and  
 

    ω =
g

h
 

 
 

The period of oscillation is  T = 2π
ω

 = 2π
h
g

 

 
(b) For the three different liquids in the U-tube the SHM is damped to differing degrees.  
The motion can be represented graphically by an exponentially decaying sinusoid.  

 
In the diagrams below, the decay envelope has the form x ~ e− t  with m=mass and 
damping constants a,b where a > b  indicates heavier damping in case (i). 
 

[case (iii), undamped SHM is not generally realised in practice but could be observed in 
special circumstances, e.g. superfluid oscillations in a U-tube or oscillations in a very 
high Q system – these were mentioned in lectures but students not expected to know it]



 
 (i) Heavy damping (very viscous liquid) 

 

 
 
 
 

 
 

(ii) Light damping (moderate viscosity)  
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 (iii) Undamped motion (zero viscosity liquid) 
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3. Standing waves on string 
 
(i) The two waves given are y1 = 0.20 sin(2.0x − 4.0t)  and y2 = 0.20sin(2.0x + 4.0t) and 

are of the form: 
 
    y = ym sin( kx ± ωt)  

 

so that k = 2.0m
−1 and ω = 4.0s

−1  by inspection.  
 

Using the identity sin A + sin B = 2sin
(A + B)

2
cos

(A − B)
2

 where A and B represent the 

two wave functions given, the standing wave is y1+ 2  given by 
 

y1+2 = 2ym sin kxcosωt = 0.40sin(2.0x)cos(4.0t) 

  
(ii) At position x = 0.45m  
 

    y = 0.40sin( 0.90)cos(4.0t) = 0.31cos(4.0t) 
 

∴  maximum amplitude with value y=0.31m occurs when cos(4.0t)=1 
 

(iii) For the standing wave pattern  
 

y1+2 = 0.40 sin( 2.0x) cos(4.0t)  
 

we will have nodes at both ends of the string. For such a string fixed at both ends, nodes 

are also located at positions x = n
λ
2

, so that  

 

    
λ
2

=
1
2

2π
k

=
π
2.0

m = 1.57m  

 
A standing wave will result when the other end of the string is fixed at x position  
 
    x = n(1.57m) = 1.57m, 3.14m,......  (n=1,2,3….) 

 



(iv) Nodes will occur at x=0,1.57m, 3.14m…… The maximum amplitude is y=0.40m 
located at positions mid-way between nodes. Assuming the string is fixed at x=0 and 
x=1.57 the maximum amplitude 0.40m is located at x=0.785m. 
 

4. Newton’s rings.  
The geometry of this arrangement is: 
       A        B 
 

 
 
                glass block 
   

Ray A: no phase change on reflection  from glass block surface into air  
Ray B: π  phase change on reflection from lens’ lower surface  
Transmission of rays: no phase change 
 

(a) The condition for maxima is 

    2d = (m +
1
2

)λ   m = 0,1,2,3,....  

and for the 5th bright ring (maximum) 
 

    2d = (4 + 1
2

)λ   (note: m=0 is the first) 

 

    d = 9
4

λ = 9
4

( 546x10 −9 ) = 1228 .5x10 −9 m  

 
    d = 1228.5nm  

 
(b) Immersion in the transparent fluid changes the optical path length between lens’ 
lower surface and glass block  
 

2.d    ⇒     2.n.d  (optical path length) 
 
    in air   in fluid 
 

where n is the refractive index of the fluid.  



 
In air, dark rings occur at  

2d = mλ  (m=0,1,2,…) 
 

So, in air, the 3rd dark ring is at 

     2d = 3λ  
 

     d = 3
2

λ   (in air) 

 

If the 5th bright fringe now occupies the position (when in the fluid) that the 3rd dark 
fringe had (in air), we have 
 

    (4 +
1
2

)λ = 2nd = 2n(
3
2

λ)  

      
      optical path length 

4.5 = 3n  
 
    n = 1.5 

 

 
5. Two Slit Interference 
 
(a) Linear separation of fringes on the screen: 

  
Maxima are observed for  d sin θ = mλ    
 
Where d is slit separation, m is integer. For two adjacent  fringes we have  

 
    d sin θ1 = mλ  
 
    d sinθ2 = (m + 1)λ 

where θ1,θ2 are the angular positions of the adjacent fringes. Since the slit-screen 
separation is 1m we have to a good approximation sin θ ≅ θ  

 



∴ ∆θ = θ2 − θ1 =
λ
d

= 600x10 −9

0.5x10−3 = 1.2x10−3rad  

 

The linear distance between fringes on the screen will be 
 
δ = L∆θ = (1m)x(1.2x10

−3
rad) = 1.2mm  

 

(b) The intensity pattern on the screen is the product of the interference effect modulated 
by the diffraction ‘envelope’. 
 
Diffraction minima occur according to the condition  

 
    asin θ = nλ   (n integer) 
 
where a is the slit width. For n=1, 

 

    θ =
λ
d

=
600 x10 −9

0.1x10 −3 = 6x10 −3rad  

 
The 5th interference fringe in this pattern has zero intensity – it is ‘modulated’ to zero by 
the diffraction envelope. The pattern looks like: 
 



(c) The intensity envelope arises because diffraction at each slit modulates the ‘strength’ 
(intensity) of the interference fringes.  
 
Using a phasor diagram: 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The slit pattern has N sub-rays each differing in phase φ  by 
 

      φ =
2πa

λ
sin θ  

for slit width a, angular position on screen θ . 
 

Referring to the diagram, 
 

   φ = Em

R
 and Eθ = 2Rsin

φ
2

=
Em
φ
2

sin
φ
2
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 
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and the intensity is  
 

   Iθ = Im
sin φ / 2

φ / 2

 
 
 
  

 
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 
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The intensity of the 3rd fringe relative to the central maximum is 
 

   Iθ = Im cos2 β
sin φ/ 2

φ/ 2

 
 
 
  

 
 
 
     

 

where β =
πd

λ
sin θ = 3π  

 

(d sin θ = 3λ ⇒ sin θ = 3.6x10
−3

)   
 

φ / 2 =
πa
λ

sin θ =
πa
λ

(3.6x10−3) = 0.6π  

 

∴ I3 = Im cos 2 (3π )
sin 0.6π

0.6π

 
  

 
  

2

= 0.255 Im  

 

(d) If there are four (rather than two) slits of equal width, the width of the interference 
fringes is reduced according to  
 

     ∆θ =
λ

Nd
 

 
where ∆θ  is the angular width of interference fringes, λ is the wavelength of 

illuminating light and N is the number of slits. 
 
In this case, doubling the number of (equivalent) slits halves the fringe widths to new 
value 0.3x10-3 rad. 

 


