Question1l  (Marks 15)
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The distance s is given by

s=./h?+(a/2)?
Coulomb’s law for charges g, and q; is
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which gives the magnitude of the force on +qg due to +Q and -Q
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By symmetry see that F,__ is parallel to the y-axis, in j direction so
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(b) The magnitude of the force between two charges q,, q, Is given

by Coulomb’s law:
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where g, is the permittivity of free space. The force can be seen to

arise from the electric field around charge g,
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If the charges are immersed in a medium other than free space, ¢, is

replaced in expressions (1) and (2) by the permittivity value ¢of that
medium. Thus, permittivity is a scaling factor for electric field
strength in a medium and quantifies the electrostatic behaviour of

the medium.

(c) Dielectric materials with high permittivity values are used in the
production of capacitors. For example, in a parallel plate capacitor,
the electric field between the plates carrying surface charge density
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a dielectric material with permittivity € >>1 inserted between the
plates lowers the electric field between the plates, thus allowing
greater charge to be stored at a given potential difference, i.e. a

greater value of C (farads) is obtained for a given geometry.

Other possible engineering examples: dielectric in a coaxial cable;

the SiO, layer in CMOS microelectronics etc.



QUESTION 2 (Marks 16)

(a) The charge density varies with radius given by

p(1r) = —5%{1—%}
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Where pO = m

(i) The volume of a spherical shell of charge of thickness dr’ at

radius r’ away from the nucleus the is
dV = 4nr'dr’
and the charge in this shell is
dg = p(r')dV = 4nr'?p(r)dr’
Integrating from r' =0tor' =,

q(r) = 'qu = 'r[47cp(r’)r’2dr' = 47:]2 —%Ll
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The total charge as a fn. of position is charge on nucleus Q plus the

electronic contribution:
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The E-field around the nucleus is symmetric: E = E(r)f. Gauss’ law
gives
JEdA= [E(MPdAT = [E(dA=E(r) [dA=E(r)(4nr?)= =4
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(if) Inthe region 0<r <R,
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At radius r =R the charge is
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as it must be for a neutral atom. By Gauss’ law therefore, we must
have E(r)=0 for r>R.




Question 3  (Marks 10)

The diagram shows a circular ring of uniform electric charge of
radius a. The total charge on the ring is Q coulombs. Derive an
expression in terms of z and a for the electric potential at a point P

vertically above the centre of the ring, 0, as shown.

The potential at point P with position vector r is

dg
V = kOIT
where k, = . We note from the geometry that
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