
Question 1  (Marks  15) 
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The distance s is given by  
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Coulomb’s law for charges q1 and q2 is  
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and the magnitude of the total force is 
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By symmetry see that  is parallel to the y-axis, in  direction so 

that  
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(b) The magnitude of the force between two charges  is given 

by Coulomb’s law: 
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where  is the permittivity of free space. The force can be seen to 

arise from the electric field around charge  
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If the charges are immersed in a medium other than free space, 0ε  is 

replaced in expressions (1) and (2) by the permittivity value εof that 

medium. Thus, permittivity is a scaling factor for electric field 

strength in a medium and quantifies the electrostatic behaviour of 

the medium. 

 
(c) Dielectric materials with high permittivity values are used in the 

production of capacitors. For example, in a parallel plate capacitor, 

the electric field between the plates carrying surface charge density 

σ  is 

ε
σ

=E  

 
a dielectric material with permittivity 1>>ε  inserted between the 

plates lowers the electric field between the plates, thus allowing 

greater charge to be stored at a given potential difference, i.e. a 

greater value of C (farads) is obtained for a given geometry.  

 

Other possible engineering examples: dielectric in a coaxial cable; 

the SiO2 layer in CMOS microelectronics etc.  

 3



QUESTION  2   (Marks  16) 
 

(a) The charge density varies with radius given by 
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(i) The volume of a spherical shell of charge of thickness rd ′  at 

radius r′ away from the nucleus the is 
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and the charge in this shell is 
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Integrating from rrto0r =′=′ , 
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The total charge as a fn. of position is charge on nucleus Q plus the 

electronic contribution: 
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The E-field around the nucleus is symmetric: rE ˆ)r(E= . Gauss’ law 

gives 
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(ii) In the region Rr0 << , 

20 r
)r(qk)r(E = ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−= 5

5

2

3

20 R2
r3

R2
r51

r
qk  

At radius Rr =  the charge is 

0
R2
r3

R2
r51Qq 5

5

2

3

R =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=  

as it must be for a neutral atom. By Gauss’ law therefore, we must 

have 0)r(E =  for Rr ≥ . 
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Question 3  (Marks  10) 

The diagram shows a circular ring of uniform electric charge of 

radius a. The total charge on the ring is Q coulombs. Derive an 

expression in terms of z and a for the electric potential at a point P 

vertically above the centre of the ring, 0, as shown.  
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The potential at point P with position vector r is 
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