THE UNIVERSITY OF NEW SOUTH WALES

SCHOOL OF PHYSICS FINAL EXAMINATION NOVEMBER 2008

PHYS3510

Advanced Mechanics, Fields and Chaos

Time Allowed – 2 hours Total number of questions - 4 Answer ALL questions All questions ARE of equal value Candidates may not bring their own calculators. The following materials will be provided by the Enrolment and Assesment Section: Calculators. Answers must be written in ink. Except where they are expressly required, pencils may only be used for drawing, sketching or graphical work

FORMULA SHEET

Euler-Lagrange equations

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_k}\right) - \frac{\partial L}{\partial q_k} = \sum_{l}^m \lambda_l a_{lk} = Q_k$$

Canonical Transformations

1)
$$F_{1}(q,Q,t)$$
 $p_{i} = \frac{\partial F_{i}}{\partial q_{i}}$ $P_{i} = -\frac{\partial F_{i}}{\partial Q_{i}}$ $K = H + \frac{\partial F_{i}}{\partial t}$
2) $F_{2}(q,P,t)$ $p_{i} = \frac{\partial F_{2}}{\partial q_{i}}$ $Q_{i} = \frac{\partial F_{2}}{\partial P_{i}}$ $K = H + \frac{\partial F_{2}}{\partial t}$
3) $F_{3}(p,Q,t)$ $q_{i} = -\frac{\partial F_{3}}{\partial p_{i}}$ $P_{i} = -\frac{\partial F_{3}}{\partial Q_{i}}$ $K = H + \frac{\partial F_{3}}{\partial t}$
4) $F_{4}(p,P,t)$ $q_{i} = -\frac{\partial F_{4}}{\partial p_{i}}$ $Q_{i} = \frac{\partial F_{4}}{\partial P_{i}}$ $K = H + \frac{\partial F_{4}}{\partial t}$
Poisson Bracket $[u,v]_{q,p} = \sum_{k} \left(\frac{\partial u}{\partial q_{k}} \frac{\partial v}{\partial p_{k}} - \frac{\partial u}{\partial p_{k}} \frac{\partial v}{\partial q_{k}} \right)$
Hamilton-Jacobi Theory $H(q,p,t)$ $H(q,p) = \text{constant}$
Canonical transformation to Q_{i}, P_{i} P_{i} (constant of motion)
New Hamiltonian $K = 0$ $K = H(P_{i}) = \alpha_{i}$
New equations of motion $\frac{\dot{Q}_{i}}{\partial P_{i}} = 0$ $\dot{Q}_{i} = \frac{\partial K}{\partial P_{i}} = v_{i}$
 $\dot{P}_{i} = -\frac{\partial K}{\partial Q_{i}} = 0$ $\dot{P}_{i} = -\frac{\partial K}{\partial Q_{i}} = 0$
With solutions $Q_{i}, P_{i} = \gamma_{i}$ Hamilton's Principle $S(q,P,t)$ Hamilton's Characteristic $W(q,P)$
Hamilton-Jacobi equation $H\left(q_{i}, \frac{\partial S}{\partial q_{i}}, t\right) + \frac{\partial S}{\partial t} = 0$ $H\left(q_{i}, \frac{\partial W}{\partial q_{i}}\right) - \alpha_{i} = 0$
New constant momenta $P_{i} = \gamma_{i}(\alpha_{1},...,\alpha_{n})$ $P_{i} = \gamma_{i}(\alpha_{1},...,\alpha_{n})$

Hamilton-Jacobi solution $S = S(q_i, \gamma_i, t)$

First half of transformation p_{p} Second half of transformationQ

$$p_{i} = \frac{\partial S}{\partial q_{i}}$$

$$p_{i} = \frac{\partial W}{\partial q_{i}}$$

$$Q_{i} = \frac{\partial S}{\partial \gamma_{i}} = \beta_{i}$$

$$Q_{i} = \frac{\partial W}{\partial \gamma_{i}} = v_{i}(\gamma_{j})t + \beta_{i}$$

 $W = W(q_i, \gamma_i)$

Action-angle Variables
$$J_i = \oint p_i dq_i = \oint \frac{\partial W_i(q_i, \alpha_1, \dots, \alpha_n)}{\partial q_i} dq_i \qquad w_i = \frac{\partial W}{\partial J_i}$$

Mathematical identities

$$\sin^{2} Q + \cos^{2} Q = 1 \qquad \tan^{2} Q + 1 = \sec^{2} Q$$

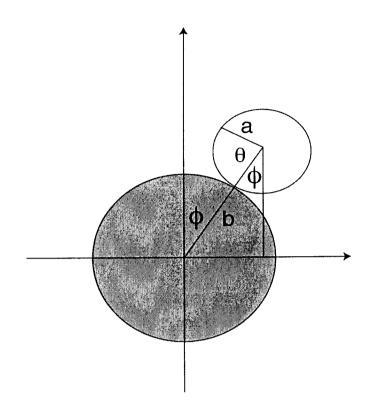
$$1 + \cos 2\phi = 2\cos^{2} \phi \qquad 1 - \cos 2\phi = 2\sin^{2} \phi$$

$$\frac{d}{dx} \tan x = \sec^{2} x \qquad \frac{d}{dx} \cot x = \csc^{2} x$$

$$\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1 - x^{2}}} \qquad \frac{d}{dx} \cos^{-1} x = -\frac{1}{\sqrt{1 - x^{2}}}$$

$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1 + x^{2}} \qquad \frac{d}{dx} \cot^{-1} x = -\frac{1}{1 + x^{2}}$$

<u>QUESTION 1.</u> (20 marks)



A sphere of radius *a* and mass *m*, with moment of inertia $I = \frac{2}{5}ma^2$, rests on top of a fixed sphere of radius *b*. The first sphere is slightly displaced so that it rolls without slipping down the second sphere.

(a) Show that the Lagrangian is

$$L = \frac{1}{2}m(\dot{x}^2 + x^2\dot{\phi}^2) + \frac{1}{5}ma^2(\dot{\theta} + \dot{\phi})^2 - mgx\cos\phi$$

where x is the distance between the centres of the two spheres.

(b) Using Lagrange's equations for a constrained system;

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_k}\right) - \frac{\partial L}{\partial q_k} = \sum_{l}^m \lambda_l a_{lk} \qquad \qquad k = 1, 2, \dots, n$$

Find the angle ϕ at which the first sphere is no longer in contact with the second sphere.

QUESTION 2. (20 marks)

a) Under what conditions is the transformation

$$Q = q^{\alpha} \cos\beta p, \qquad P = q^{\alpha} \sin\beta p$$

canonical?

b) If the Hamiltonian in the new variables is $K = Q^2 + P^2$, find the Hamiltonian for the old variables and find the time evolution of the old variables q and p.

c) If the generating function $F_2(q,P) = \sum q_i P_i + \varepsilon G(q,P)$ generates and infinitesimal contact transformation, find the change in q and p.

d) If G = H(q,p) where H is the Hamiltonian, determine the contact transformation generated by H.

QUESTION 3. (20 marks)

Find the frequencies of a two-dimensional simple harmonic oscillator with mass m and unequal force constants k_1 and k_2 in the x and y directions respectively, using the method of action-angle variables. The Hamiltonian is given by

$$H = \frac{1}{2m} \left(p_x^2 + p_y^2 \right) + \frac{1}{2} \left(k_1 x^2 + k_2 y^2 \right).$$

QUESTION 4. (20 marks)

a) Determine the stability properties of equations

$$\dot{x} = x + y - x\left(x^2 + y^2\right)$$
$$\dot{y} = -x + y - y\left(x^2 + y^2\right)$$

b) The stability of an iterative mapping $x_{n+1} = f(x_n)$ can be determined by calculating the Lyapunov exponent defined by

$$\lambda = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \ln |f'(x_i)|$$

Find the Lyapunov exponent as a function of μ for the two fixed points of the quadratic map, $x_{n+1} = \mu x_n (1 - x_n)$. What is the stability of the fixed points at $\mu = 2$?

c) What are tangent bifurcations and pitchfork bifurcations and how do they arise?

d) For the quadratic map we can describe the type of bifurcations that lead to cycles of a particular length. Complete all the missing entries in the table.

cycle length	periodic points	'prime' points	number of n-cycles	created by	created by
n	2 ⁿ			tangent	pitchfork
1	2	2	2	1	0
2	4	2	1	0	1
3	8	6	2	1	0
4	16				
5	32				
6	64				
7	128				
8	256				
12	4096				

e) Define the unstable manifold of a fixed point. Prove that unstable manifolds from different fixed points do not intersect.