University of New South Wales – School of Physics

PHYS 3011 / PHYS 3230 – Electrodynamics Mid-term Test – Thursday, 18 April 2013 Time: 50 minutes

Please PRINT your name and number. Write your answers in ink. Please do not use red ink. Start each answer on a new page. Show all working.

There are three questions on this paper: answer all questions (total 50 marks)

Q.1 (15 marks)

An electric field is given by: $\mathbf{E} = (2xy + x^3) \mathbf{\hat{x}} + (x^2 + 2yz^2) \mathbf{\hat{y}} + 2y^2 z \mathbf{\hat{z}}$. Show that this field is conservative, and find an expression for the electric potential, V(x, y, z)

Q.2 (15 marks)

If **B** is uniform, show that $\mathbf{A} = -\frac{1}{2}(\mathbf{r} \times \mathbf{B})$, where **r** is the vector from the origin to the point in question. That is, show that $\nabla \cdot \mathbf{A} = 0$ and $\nabla \times \mathbf{A} = \mathbf{B}$.

Hint: You may want to remind yourself of the results for $\nabla \cdot \mathbf{r}$ and $\nabla \times \mathbf{r}$ first.

Q.3 (20 marks)

A laser beam has a power of 30GW and a diameter of 3mm. Calculate the peak value of E. What is the electric field strength of the laser inside glass of refractive index 1.5? (Assume $\mu_r = 1$ inside the medium.)

OUTLINE ANSWERS

(1)
$$\nabla \times \mathbf{E} = \left(\frac{\partial E_y}{\partial z} - \frac{\partial E_z}{\partial y}, \frac{\partial E_z}{\partial x} - \frac{\partial E_x}{\partial z}, \frac{\partial E_x}{\partial y} - \frac{\partial E_y}{\partial x}\right)$$

= $(4yz - 4yz, 0 - 0, 2x - 2x) = (0, 0, 0)$

So the field is conservative.

$$V = -\int \mathbf{E} \cdot \mathbf{d}\ell$$

= $-\int_0^x (2xy + x^3) dx \Big|_{y=z=0} - \int_0^y (x^2 + 2yz^2) dy \Big|_{x=x, z=0} - \int_0^z 2y^2 z dz \Big|_{x=x, y=y}$
= $-\frac{x^4}{4} - x^2y - y^2 z^2 + C$

(2) Reminder of $\nabla \times \mathbf{r}$ and $\nabla \cdot \mathbf{r}$:

$$\nabla \times \mathbf{r} = \begin{vmatrix} \mathbf{\hat{i}} & \mathbf{\hat{j}} & \mathbf{\hat{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x & y & z \end{vmatrix} = 0 \qquad \nabla \cdot \mathbf{r} = \frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z} = 3$$

If
$$\mathbf{A} = -\frac{1}{2}(\mathbf{r} \times \mathbf{B})$$
 (**B** is constant)
Then $\nabla \cdot \mathbf{A} = -\frac{1}{2} \{ \mathbf{B} \cdot (\nabla \times \mathbf{r}) - \mathbf{r} \cdot (\nabla \times \mathbf{B}) \} = 0 + 0 = 0$
and $\nabla \times \mathbf{A} = -\frac{1}{2} \{ (\mathbf{B} \cdot \nabla) \mathbf{r} - (\mathbf{r} \cdot \nabla) \mathbf{B} + \mathbf{r} (\nabla \cdot \mathbf{B}) - \mathbf{B} (\nabla \cdot \mathbf{r}) \}$
 $= -\frac{1}{2} \{ (B_x \frac{\partial}{\partial x}) \mathbf{r} + (B_y \frac{\partial}{\partial y}) \mathbf{r} + (B_z \frac{\partial}{\partial z}) \mathbf{r} - 0 + 0 - \mathbf{B} \cdot 3 \}$
 $= -\frac{1}{2} \{ B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}} + B_z \hat{\mathbf{k}} - 3\mathbf{B} \} = -\frac{1}{2} \{ \mathbf{B} - 3\mathbf{B} \} = \mathbf{B}$

P.T.O.

(3)(a)
$$N = \frac{3 \times 10^{10}}{\pi \times (1.5 \times 10^{-3})^2} = 4.244 \times 10^{15} \text{ W.m}^{-2}$$

 $N = \frac{E_0^2}{Z_0}$ $\therefore E_0 = \sqrt{NZ_0} = \sqrt{4.244 \times 10^{15} \times 376.7}$
 $= 1.264 \times 10^9 = 1.26 \text{ GV/m}$ (This is E_{rms})
So $E_{\text{peak}} = \sqrt{2} \times 1.264 \times 10^9 = 1.79 \text{ GV/m}$

(b)
$$Z = \frac{Z_0}{n}$$
 $\therefore E = \sqrt{NZ} = \sqrt{\frac{NZ_0}{n}} = \frac{E_0}{\sqrt{n}} = \frac{1.264 \times 10^9}{\sqrt{1.5}}$
= 1.032 × 10⁹ = 1.03 GV/m (rms)
So $E_{\text{peak}} = \sqrt{2} \times 1.032 \times 10^9 = 1.46 \text{ GV/m}$

Alternatively:

$$\begin{array}{ll} u_0 = \epsilon_0 \, E_0^2 & u = \epsilon_r \epsilon_0 \, E^2 & \text{but } uv = u_0 c \quad \therefore \quad u = u_0 c/v = u_0 \, n \\ \\ \therefore \quad \epsilon_r \not \in \mathcal{E}^2 = \not \in \mathcal{E}_0^2 \, n = E_0^2 \, \sqrt{\epsilon_0} \\ \\ \therefore \quad E^2 = E_0^2 / \sqrt{\epsilon_r} = E_0^2 / n \\ \\ \therefore \quad E = E_0 / \sqrt{n} = 1.03 \, \text{GV/m (rms)}, \ 1.46 \, \text{GV/m (peak)}. \end{array}$$

Useful Formulae: PHYS3011/PHYS3230

$$\epsilon_0 = 8.854 \ge 10^{-12} \text{ Fm}^{-1}$$
 $\mu_0 = 4\pi \times 10^{-7} \text{ Hm}^{-1}$ $c = 3 \times 10^8 \text{ ms}^{-1}$

Volume element $= dx dy dz = r^2 \sin \theta dr d\theta d\phi$ Surface area of sphere $= 4\pi r^2$ Volume of sphere $= \frac{4}{3}\pi r^3$

Divergence Theorem: $\int_{V} \nabla \cdot \mathbf{A} \, dV = \int_{S} \mathbf{A} \cdot \mathbf{dS} \, (S \text{ is the surface enclosing } V)$ Stokes' Theorem: $\int_{S} (\nabla \times \mathbf{A}) \cdot \mathbf{dS} = \oint_{L} \mathbf{A} \cdot \mathbf{dI} \, (L \text{ is the curve bounding } S)$ Vector identity: $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C}) \mathbf{B} - (\mathbf{A} \cdot \mathbf{B}) \mathbf{C}$ So: $\nabla \times (\nabla \times \mathbf{E}) = \nabla (\nabla \cdot \mathbf{E}) - \nabla^{2} \mathbf{E}$ Also: $\nabla \cdot (\mathbf{E} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{E}) - \mathbf{E} \cdot (\nabla \times \mathbf{B})$

Dielectric materials:

 $\mathbf{P} = \chi \epsilon_0 \mathbf{E} \qquad \mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P} = (1 + \chi) \epsilon_0 \mathbf{E} = \epsilon_r \epsilon_0 \mathbf{E}$

E field (and potential difference) is reduced by a factor ϵ_r in the bulk.

Energy density, $u = \frac{1}{2} \epsilon_r \epsilon_0 E^2$ per unit volume $= \frac{1}{2} \mathbf{E} \cdot \mathbf{D}$

Gauss's Law for \mathbf{D} : $\int \mathbf{D} \cdot \mathbf{dS} = q_{free} \quad \nabla \cdot \mathbf{D} = \rho_{free}$

At a boundary, E_{\parallel} and V are continuous (D_{\perp} is continuous.)

Cavities in dielectrics: $\mathbf{E}_{local} = \mathbf{E}_{bulk}$ for a needle-shaped cavity;

 $\mathbf{E}_{\text{local}} = \mathbf{E}_{\text{bulk}} + \mathbf{P}/\epsilon_0$ for a disc-shaped cavity;

 $\mathbf{E}_{\text{local}} = \mathbf{E}_{\text{bulk}} + \mathbf{P}/3\epsilon_0$ for a spherical cavity.

Clausius-Mossotti equation: $\frac{n\alpha}{3\epsilon_0} = \left(\frac{\epsilon_r - 1}{\epsilon_r + 2}\right)$

Capacitance:

stored charge $Q = C\Delta V$ [C] stored energy $U = \frac{1}{2}Q\Delta V = \frac{1}{2}C(\Delta V)^2$ or $\frac{1}{2}Q^2/C$ [J] capacitance of parallel-plate capacitor is $C = \epsilon_r \epsilon_0 A/d$ [F] capacitance of isolated sphere is $C = 4\pi \epsilon_r \epsilon_0 R$ [F]

DC Circuits:

Ohm's Law: $\Delta V = IR$ resistance, $R = \rho l/A$ [Ω] Kirchhoff's Laws: (1) $\Sigma I = 0$ at a junction (2) $\Sigma \mathcal{E} - \Sigma IR = 0$ around each loop

Joule heating: power dissipated, $P = I\Delta V = I^2 R = (\Delta V)^2/R$ [W]

Ohm's law: $\mathbf{J} = \sigma \mathbf{E}$ power dissipated/unit volume $= \mathbf{J} \cdot \mathbf{E} = \sigma E^2$

Magnetic media:

$$\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M}) = \mu_0(1 + \chi_m)\mathbf{H} = \mu_r\mu_0\mathbf{H} \qquad ie \quad \mathbf{H} = \frac{\mathbf{B}}{\mu_0} - \mathbf{M}$$
$$\nabla \cdot \mathbf{B} = 0, \text{ so } \nabla \cdot \mathbf{H} + \nabla \cdot \mathbf{M} = 0$$

Ampère's law becomes: $\nabla \times \mathbf{H} = \mathbf{J}_{free}$

At a boundary, $B'_{\perp} = B_{\perp}$ and $H'_{\parallel} = H_{\parallel}$

Inductance:

Mutual inductance: $\Phi_1 = L_{12}I_2$, $\Phi_2 = L_{12}I_1$, Self inductance: $\Phi = LI$ Self Inductance of a solenoid: $L = \mu_r \mu_0 \frac{N^2}{\ell} A$ magnetic energy: $U = \frac{1}{2}LI^2$ Energy density in magnetic field: $u = \frac{1}{2}\frac{B^2}{\mu_r \mu_0} = \frac{1}{2}\mathbf{B} \cdot \mathbf{H}$

Maxwell's Equations

In a vacuum:

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} \qquad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \cdot \mathbf{B} = 0 \qquad \nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

Lorentz force law: $\mathbf{F} = q \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right)$

Maxwell's equations in dielectric and magnetic media:

$$\nabla \cdot \mathbf{D} = \rho \qquad \nabla \times \mathbf{E} = -\dot{\mathbf{B}}$$

$$\nabla \cdot \mathbf{B} = 0 \qquad \nabla \times \mathbf{H} = \mathbf{J} + \dot{\mathbf{D}}$$

EM Waves:

Wave equation for **E** in free space: $\nabla^2 \mathbf{E} = \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}$ ie $c = 1/\sqrt{\mu_0 \epsilon_0}$

(in a medium: $v = 1/\sqrt{\mu_r \mu_0 \epsilon_r \epsilon_0} = c/n$, n = refractive index)

Solution: $E_x = E_0 \sin(kx - \omega t)$ for monochromatic wave travelling in +ve x-direction.

E, **B** and the direction of propagation $\hat{\mathbf{k}}$ are mutually perpendicular:

$$\hat{\mathbf{k}} \cdot \mathbf{E} = 0 \qquad \hat{\mathbf{k}} \cdot \mathbf{B} = 0 \qquad c\mathbf{B} = \hat{\mathbf{k}} \times \mathbf{E} \qquad \hat{\mathbf{E}} \times \hat{\mathbf{B}} = \hat{\mathbf{k}}$$

The direction of ${\bf E}$ is the direction of polarization of the E-M wave.

Impedance of free space, $Z_0 = \frac{|E|}{|H|} = \sqrt{\frac{\mu_0}{\epsilon_0}} = 377 \,\Omega$ Poynting vector: $\mathbf{N} = \mathbf{E} \times \mathbf{H} = \frac{1}{\mu_0} (\mathbf{E} \times \mathbf{B}) = E^2/Z_0 = H^2 Z_0$ NB: Wave number, $k = \frac{2\pi}{\lambda}$ Angular frequency, $\omega = 2\pi f$ Phase velocity, $v = f\lambda = \frac{\omega}{k}$ Group velocity $= \frac{d\omega}{dk}$

NB There will be more formulae in the final exam !