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Question 1. Semiclassical approximation (Marks 30).

Consider the decay of the heavy nucleus of charge Z+1 into the nucleus of charge Z and the

2
proton, which has the mass m. Let the energy of the proton equals E > 0, E = r—n-zz— , Where v

is the proton velocity at large separations.

a. Write down the potential energy U(r) of the proton in the Coulomb field created by the
residual nucleus of charge Z.

b. Remember that in the classical approximation the repulsive potential energy U(r)>0
prevents the proton from being located in the proximity of the nucleus. Find the stopping
point ry, which separates the classically allowed region of large separations, r > 7, from
the forbidden region 1y < r <ry. Here ry is the radius of the residual nucleus, which
usually, for not extremely high E, is much smaller than ry, and hence can be approximated
by zero, ry = 0. Presume in these estimations that the orbital momentum of the proton is
zero. Present the sketch for the potential energy, show in this sketch the energy level E
and the point ry.

c. Write down the Hamiltonian, which governs propagation of the proton outside the nucleus
with zero angular momentum.

d. With exponential accuracy estimate how the probability of the decay depends on the
energy E. With this purpose estimate the probability for the quantum tunneling, which
allows the proton to negotiate the classically forbidden region, 0 < r < ry.

Hint. The necessary probability can be estimated as follows
W o« 2, (1.1)

where 1 describes the exponential suppression of the wave function in the classically
forbidden interval of separations 0 < r <71,. This suppression can be found using the
semiclassical approximation. The calculations require the following integral

To
1 1 T
fo ;—;dr—;\/ﬁ. (1.2)

It may be helpful to keep in mind that you need to derive a clear, simple formula for W,
called Rutherford’s factor, which is a function of only one dimensionless parameter, W =

ZZ
W(-h%.



Question 2. Coulomb problem (Marks 30).

a. Write down the Schrédinger equation for the radial wave function P;(r), which describes
the radial motion of the electron with the orbital momentum [/ in the Hydrogen atom.
Remember that the wave function in this case can be presented as follows

Y(r) = 2P(r) Vm(6, $). @1

Keep in mind also that in the spherical coordinates the Laplacian reads

A
r2’

A=A, + 2.2)

while the spherical harmonic Y;,,(8,¢) is the eigenfunction of the angular part of the
Laplacian 4

—AYm(6,¢) = (I +1)Y,m(6,9) . (23)

It is also helpful to remember that

2, =2 p"(r). 2.4)

b. Consider the following p-wave function, i. e. a radial function that describes a state with
l =1,

1

Pop(r) = To= (r/a5)? exp(— 7)., @)

where ap = #/(me?) is the Bohr radius. Prove that P,,(r) satisfies the radial
Schrédinger equation and find the corresponding eigenvalue, i. e. the energy Es),.
Hint: here and below it is convenient to fulfill calculations in atomic units, in which
h=m, =|e| =ag =1.

c. Prove that the wave function (2.5) describes the lowest energy state for the p-wave.

d. Verify validity of the normalization condition

f0°° PL(r)dr=1. (2.6)

Hint: the necessary integral reads

n!
yn+1'

J, e *xMdx = @.7)



Question 3. Perturbation theory (Marks 40).

a. Consider the 2p state of the Hydrogen atom. Assume that there exists the small
correction to the Coulomb field

SU(r) =Aexp(—ur). 3.1

where A, u are two parameter, A is small and p > 0.
Using the perturbation theory find the first order correction §E5, to the energy of the
2p state.
Hint. Remember that the related wave function is known, see (2.5), and keep in mind
that the necessary in calculations integral is given in (2.7).

b. Consider the perturbation theory in general case. Assume that there exist two close
energy levels, E; < E,, which separation is much smaller then energy separations with
other energy levels in the system

E,—E K< |E2 - Enlr lEl - Enll n=34%.. (3.2)

Assume further that there exists some perturbation U, and that the first order
corrections to E; and E, are absent, (1|6U|1) = (2|6U|2) = 0.
Prove that the second order corrections to these states satisfy

SPDE, ~ —§@E,, §PE <0, §PE,>0, (3.3)

which make the energy separation between the two close energy levels bigger (the
effect is often referred to as repulsion of close energy levels).

c. Prove the following statement. (Sometimes it is called the Hellmann—Feynman
theorem, but do not be scared out by names, it is a simple statement.)

Suppose there is the Hamiltonian H = H(A), which depends on the parameter A (an
example provides Eq.(3.1), see also (3.7) below). Correspondingly, all energy levels
in the system as well as all wave functions describing these levels depend on this
parameter, E,, = E,(4), Y, = P, (A). Prove that the derivative of the energy satisfies

dEn(1) _ 0H(A)

222 = WD 7 [Pn (D). (3.4)
Hint. Use the fact that

En(D) = WD) |HOD |9 ), (3.5)

as well as an obvious identity

A

H(A+8X) ~ H(A) + 67 ZW. (3.6)

A

Apply after that the first order perturbation theory for 6A Z—I;.
d. Verify that (3.4) is valid for the example considered in Question 3a, when

A

H(A) =2+ 2ew. 3.7)



