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Question 1
A diffraction mask is created by drilling two tiny pinholes into an opaque
plate. The pinholes are separated by 1 mm in the horizontal direction. The
mask is illuminated by coherent monochromatic plane parallel light with a
wavelength of 500nm. An observation screen is placed 100 metres from
the mask.

(i)

(H)

(Hi)

(iv)

(v)

Show that the Fraunhofer condition is satisfied for this diffraction
experiment.
Write an expression that describes the transmission function of the
diffraction mask.
Using Fourier theory (or otherwise), derive the equation for the
diffracted field in the plane of the observation screen 100 metres
from the mask.
Sketch a graph representing the diffracted field in the plane of the
observation screen using a distance scale in the appropriate metric
unit (e.g. mm, cm, m, km etc). Carefully mark the positions of all
zeros, maxima and mir'\ima of the field.
Sketch the diffracted intensity pattern in the observation plane using
the same scale as for the diffracted field. Mark the positions of zeros
and maxima.

The original mask is altered by replacing the two pinholes by a pair of very long
parallel slots, each of width W, where W is less than half the 1 mm separation
between the centres of the slots.

1mm

(vi) Derive an expression for the diffracted intensity observed on the
screen 100 metres from the new diffraction mask.

(vii) Sketch the intensity pattern seen on the observation screen.

The mask is altered again. This time the slot width W is enlarged so that it is
just under 1 mm.

(viii) Sketch the intensity pattern seen on the observation screen.
(ix) Comment on the result.
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Question 2

Answer TWO of the following questions. Use words, pictures and/or equations
to illustrate your answer. Give numerical examples wherever possible.

(i) Describe how Fresnel or near field diffraction can be thought of as a
convolution process. Give examples.

(ii) Explain the meaning of spatial frequencies. Give examples.
Explain how spatial frequencies in an object are intimately linked to
diffraction effects produced by the object.

(iii) Explain the difference between temporal and spatial (or transverse)
coherence. Give examples of these two types of coherence. Explain
how each of these coherence properties is related to the properties
of a light source. Give numerical examples.

(iv) Explain the origin of Poisson's spot (bright spot in the centre of the
geometric shadow produced by an opaque circular disc). Why is it
not easily observed?

(v) Outline how the Kirch~off-Fresnel equation can be derived from
Maxwell's equations of electromagnetism.

(Vi) The Fourier transform of an object of finite dimension contains
redundant information. Show how the Fourier transform of such an
object can be sampled so that the original object can be recreated
via an inverse Fourier transform without loss of resolution. Discuss
the implications of these findings.

(vii) Explain how matrix methods can be used to solve practical problems
in geometric optics. Give examples of how the methods work.

(viii) Explain why the van Cittert-Zernike theorem for determining the
complex degree of coherence has the same form as the diffraction
equation. Explain the parallels between a diffraction problem and a
coherence problem using an example.
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Question 3

The Huygens-Fresnel theory of diffraction is based on two principles:
1. each point on a wavefront acts as a source of secondary wavelets
2. these 2° wavelets produce a new wavefront by mutual interference.

(i) Draw a diagram to explain how the Huygens-Fresnel
construction works.

This construction results in the Huygens-Fresnel diffraction equation:

eikR

1jJ(~,11) = ff f(X,y)/?K(X)dxdy
aperture

where f(x,y) is the transmission function of a diffraction aperture and 1V(~,11) is
the diffracted field.

(ii) Explain the meaning of the function K(X) in the Huygens­
Fresnel equation.

A more fundamental diffraction theory is the Kirchhoff Scalar theory, which is
based on Maxwell's electromagnetic equations. In this theory, an expression
for a field at point P, <I>(P), arising from a diffraction aperture illuminated by a
point source Is given by the Kirchhoff-Fresenl equation:

rjJ(p) = -i If Aeikp eikr(nep-ner)dS
}.. Aperture P r 2

(Hi) . Explain how the terms in the Huygens-Fresnel equation
correspond to terms in the Kirchhoff-Fresnel equation.

(iv) What is the physical meaning of the additional terms in the
Kirchhoff-Fresnel equation that are absent in the Huygens­
Fresnel equation.

In the case of far field diffraction, the diffraction equations can be used to
show that the diffracted field is related to the aperture transmission function by
a Fourier transform. This derivation results in the Fraunhofer condition:

(v) Explain the meaning of the terms in this equation.
(vi) What is the origin of this condition in terms of the derivation

of the Fraunhofer diffraction equation?
(vii) Explain why this condition is not necessary when a lens is

used to produce a diffracted field in its back focal plane.
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Question 4

(i) What is meant by the complex degree of coherence, Y12 or y(r1, r2,
,;)?

(ii) Explain the relationship between the complex degree of coherence
and the visibility of interference fringes? Give an example to
illustrate this connection.

The van Cittert-Zernike theorem can be used to compute the complex degree
of coherence for distant thermal sources. Consider a car headlamp as a
thermal source at a distance of 500m. Approximate the lamp filament as a
rectangular source, 5mm long and 1mm wide.

Smm

• • t~ lmm

'\ / t

(iii) Derive an expression for the complex degree of coherence of
500nm light produced by the car headlamp at a distance of 500m.

(iv) Plot the complex degree of coherence as a function of separation of
two points.

Two pinholes are placed in a screen 500 m from the car headlamp with a filter
to remove all light except for that with a wavelength of 500 nm. The pinholes
are oriented so that the line joining them is perpendicular to the long axis of
the headlamp fiiament. The distance between the two pinholes can be varied.
The interference pattern produced is observed on a second screen.

(v) Describe the interference pattern observed as the distance between
the pinholes is varied.

(vi) Sketch a series of interference patterns to illustrate key features of
the complex degree of coherence.
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