

#### THE UNIVERSITY OF NEW SOUTH WALES

## SCHOOL OF PHYSICS FINAL EXAMINATION

## PHYS3050 - Nuclear Physics

# PHYS3031 – Advanced Optics and Nuclear Physics, Paper 1

## Session 2, 2012

- 1. Time allowed -2 hours
- 2. Total number of questions 5
- 3. Total marks available 100
- 4. Answer ALL questions. If math presents a difficulty use physical arguments and plain English.
- 5. Answer Part A (questions 1, 2, 3) in one booklet and Part B (questions 4, 5) in a separate booklet.
- QUESTIONS ARE NOT OF EQUAL VALUE.
   Marks available for each question are shown in the examination paper.
- 7. University-approved calculators may be used.
- 8. All answers must be written in ink. Except where they are expressly required, pencils may only be used for drawing, sketching or graphical work.
- 9. This paper may be retained by the candidate.

### Useful Formulae and Tables

### Table of quark properties:

| Quark type (flavour)       | u    | d    | S    | С    |
|----------------------------|------|------|------|------|
| Baryon number B            | 1/3  | 1/3  | 1/3  | 1/3  |
| Spin $J$                   | 1/2  | 1/2  | 1/2  | 1/2  |
| Charge $Q$ (units of $e$ ) | +2/3 | -1/3 | -1/3 | +2/3 |
| Isospin $T$                | 1/2  | 1/2  | 0    | 0    |
| Isospin projection $T_z$   | +1/2 | -1/2 | 0    | 0    |
| Strangeness $S$            | 0    | 0    | -1   | 0    |
| Charm $C$                  | 0    | 0    | 0    | +1   |

#### Some useful formulae:

• Radial Schrödinger equation for a central potential, letting  $\psi(r, \theta, \phi) = \frac{R_l(r)}{r} Y_{lm}(\theta, \phi)$ :

$$\frac{d^2 R_l(r)}{dr^2} + \frac{2m}{\hbar^2} \left( E - V(r) - \frac{\hbar^2 l(l+1)}{2mr^2} \right) R_l(r) = 0.$$

• Density of states formula:

$$dn = \frac{4\pi p^2}{(2\pi\hbar)^3} \, dp$$

• 
$$E^2 = m^2 c^4 + p^2 c^2$$

• Wavefunction of K-shell electron (1s electron):

$$\psi(r) = \sqrt{\frac{Z^3}{\pi a_B^3}} \exp(-Zr/a_B), \qquad a_B = \frac{\hbar^2}{m_e e^2}$$

## Particle properties:

|                                                      | Q<br>1                                                                                                            | $J^P$                                                                                                                                                      | B      | T                                               | S                                                                                                | C              |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------|
| р                                                    | 1                                                                                                                 | 1/2+                                                                                                                                                       | 1      | 1/2                                             | 0                                                                                                | 0              |
|                                                      | 0                                                                                                                 | 1/2+                                                                                                                                                       | 1      | $\frac{1}{2}$                                   | 0                                                                                                | 0              |
| $\pi^+$                                              | 1                                                                                                                 | 0-                                                                                                                                                         | 0      | 1                                               | 0                                                                                                | 0              |
| $\pi^o$                                              | 0                                                                                                                 | 0-                                                                                                                                                         | 0      | 1<br>1<br>1                                     | 0                                                                                                | 0              |
| $\pi^-$                                              | -1                                                                                                                | 0-                                                                                                                                                         | 0      | 1                                               | 0                                                                                                | 0              |
| $K^+$                                                | 1                                                                                                                 | 0-                                                                                                                                                         | 0      | $\frac{1}{2}$                                   | 1                                                                                                | 0              |
| $K^{-}$                                              | $ \begin{array}{cccc} 0 & 1 & & & \\ 0 & -1 & & & \\ -1 & 1 & & & \\ -1 & 0 & & & \\ 0 & 0 & & & \\ \end{array} $ | 0-                                                                                                                                                         | 0      | $\frac{1}{2}$                                   | $\frac{1}{-1}$                                                                                   | 0              |
| $K^o$                                                | 0                                                                                                                 | 0-                                                                                                                                                         | 0      | 1/2                                             | 1                                                                                                | 0              |
| $K_S^o$                                              | 0                                                                                                                 | 0-                                                                                                                                                         | 0      | $\frac{1}{2}$                                   |                                                                                                  | 0              |
| $K_L^o$                                              | 0                                                                                                                 | 0-                                                                                                                                                         | 0      | 1/ <sub>2</sub> 1/ <sub>2</sub> 1/ <sub>2</sub> |                                                                                                  | 0              |
| $\eta$                                               | 0                                                                                                                 | 0-                                                                                                                                                         | 0      | 0                                               | 0                                                                                                | 0              |
| $\rho^+$                                             | 1                                                                                                                 | 1-                                                                                                                                                         | 0      | 1                                               | 0                                                                                                | 0              |
| $\rho^o$                                             | 0                                                                                                                 | 1-                                                                                                                                                         | 0      | 1                                               | 0                                                                                                | 0              |
| $\rho^-$                                             | -1                                                                                                                | 1-                                                                                                                                                         | 0      | 1                                               | 0                                                                                                | 0              |
| $\omega$                                             | 0                                                                                                                 | 1-                                                                                                                                                         | 0      | 0                                               | 0                                                                                                | 0              |
| $\Lambda^o$                                          | 0                                                                                                                 | $\frac{1}{2}^{+}$                                                                                                                                          | 1<br>1 | 0                                               | -1                                                                                               | 0              |
| $\Sigma^{-}$                                         | -1                                                                                                                | 1/2+                                                                                                                                                       | 1      | 1                                               | $     \begin{array}{r}       -1 \\       -1 \\       -1 \\       -1 \\       0     \end{array} $ | 0              |
| $\Sigma^o$                                           | 0                                                                                                                 | 1/2+                                                                                                                                                       | 1      | 1                                               | -1                                                                                               | 0              |
| $\Sigma^+$                                           | 1                                                                                                                 | 1/2+                                                                                                                                                       | 1<br>1 | $\frac{1}{1}$                                   | -1                                                                                               | 0              |
| $\Delta^{-}$                                         | -1                                                                                                                | $3/2^{+}$                                                                                                                                                  | 1      | 3/2                                             | 0                                                                                                | 0              |
| $\Delta^o$                                           | 0                                                                                                                 | $3/2^{+}$                                                                                                                                                  | 1      | $^{3}/_{2}$                                     | 0                                                                                                | 0              |
| $\Delta^+$                                           | 1                                                                                                                 | $3/2^{+}$                                                                                                                                                  | 1      | $\frac{3}{2}$ $\frac{3}{2}$                     | 0                                                                                                | 0              |
| $\Delta^{++}$                                        | 2                                                                                                                 | $3/2^{+}$                                                                                                                                                  | 1      | $^{3}/_{2}$                                     | 0                                                                                                | 0              |
| $\Xi^{o}$                                            | 0                                                                                                                 | 1/2+                                                                                                                                                       | 1      | $\frac{1}{2}$                                   | -2                                                                                               | 0              |
| $\Xi^-$                                              | -1                                                                                                                | 1/2+                                                                                                                                                       | 1<br>1 | 1/2                                             | -2                                                                                               | 0              |
| $\mathcal{O}_{-}$                                    | -1                                                                                                                | $3/2^{+}$                                                                                                                                                  | 1      | 0                                               | -3                                                                                               | 0              |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$ | $\begin{array}{c} 0 \\ 1 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 0 \\ \end{array}$          | 1/2+ 1/2+ 0- 0- 0- 0- 0- 0- 0- 0- 1- 1- 1- 1- 1/2+ 1/2+ 1/2+ 1/2+ 3/2+ 3/2+ 3/2+ 3/2+ 1/2+ 3/2+ 1/2+ 1/2+ 3/2+ 1/2+ 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- | 0      | 0                                               | $0 \\ -2 \\ -2 \\ -3 \\ 0$                                                                       | 0              |
| $D^+$                                                | 1                                                                                                                 | 0-                                                                                                                                                         | 0      | $\frac{1}{2}$                                   | 0                                                                                                | $\frac{1}{-1}$ |
| $D^{-}$                                              | -1                                                                                                                | 0-                                                                                                                                                         | 0      | $\frac{1}{2}$                                   | 0                                                                                                | -1             |
| $D^o$                                                | 0                                                                                                                 | 0-                                                                                                                                                         | 0      | $\frac{1}{2}$                                   | 0                                                                                                | 1              |

# Part A (answer in a separate booklet)

## Question 1 (30 marks)

Nucleons and pions

(a) Calculate the Compton radius of the pion (fm)

$$r_{\pi} = \frac{1}{m_{\pi}}$$

remembering that  $m_{\pi} \approx 140 \, \text{MeV}$ .

(b) Explain very briefly in simple physical terms the origin of the Yukawa interaction between two nucleons

 $U_Y(r) = -g^2 \frac{e^{-m_\pi r}}{r}$ 

In particular

- i. explain qualitatively why this interaction is attractive
- ii. give a qualitative reason for the strong dependence of this interaction on the pion mass
- iii. give an estimate for the critical separation  $\delta r$  (fm) between two nucleons below which the Yukawa interaction is prominent
- (c) Using the uncertainty principle and the separation  $\delta r$  (which was found in Q1b)
  - i. give an estimate for the kinetic energy K of nucleons in nuclei, expressing it via the proton and pion masses (remember that  $m_p \approx 940\,\mathrm{MeV}$  and, as was mentioned,  $m_\pi \approx 140\,\mathrm{MeV}$ ).
  - ii. knowing K estimate the typical potential energy U of nucleons in nuclei
  - iii. derive from the found K an estimate for a velocity v of nucleons in nuclei

# Question 2 (10 marks)

Parity

- (a) Explain why the parity proves to be useful for description of nuclear properties.
- (b) Present the parity for pions. Explain briefly the qualitative physical reasons which lead to this result.
- (c) Consider the radiation of a photon by the excited nucleus. Assume that this process takes place as the E1 transition.
  - i. Find the relation between the parities of the initial  $P_i$  and final  $P_f$  states of the nucleus.
  - ii. Present restrictions on the initial  $J_i$  and final  $J_f$  total momenta of the nucleus.

Hint: Remember that the photon emitted via a E1 transition occupies the state with quantum numbers  $1^-$ .

### Question 3 (10 marks) Isospin

- (a) Explain briefly which property of nucleons and pions prompts describing them using the isotopic spin.
- (b) Present the isotopic spin and its projection for
  - i. proton
  - ii. neutron
  - iii. each of the three pions
- (c) Calculate the projection of the isotopic spin for the nucleus with the mass number A and atomic number Z.
- (d) Calculate the isotopic spin and its projection for the deuteron. Hints:
  - remember that in this case S=1, while L=0 or 2
  - remember also that the symmetrical (antisymmetrical) spin-function describes a state of spin 1 (spin zero)
  - similarly, symmetrical (antisymmetrical) isospin function describes a state of isospin 1 (isospin zero)
  - keep in mind that the Fermi statistics need to be satisfied.

# Part B (answer in a separate booklet)

#### Question 4 (25 marks)

#### Shell model

- (a) Consider the oscillator model for nuclear self consistent potential. Representing the spherically symmetric potential as a combination of x, y, and z parabolic potentials, and using the known result for the energy levels of a one-dimensional oscillator  $E_n = (n+1/2)\omega$ , find
  - i. The lowest four energy levels of the 3D oscillator
  - ii. Parity of states in each shell
  - iii. Capacity of each nuclear shell
  - iv. Magic numbers of protons and neutrons
- (b) With reference to the shell model diagram below, explain why magic numbers differ from the result of Q4a.

| $1g_{9/2}$ ————                                 | [50] |
|-------------------------------------------------|------|
| $2p_{1/2}$ ———————————————————————————————————— |      |
| $2p_{3/2}$ ———————————————————————————————————— |      |
| $1f_{7/2}$ ————                                 | [28] |
| $1d_{3/2}$ ———————————————————————————————————— | [20] |
| $2s_{1/2}$ ———————————————————————————————————— |      |
|                                                 | f-1  |
| $1p_{1/2}$ ———————————————————————————————————— | [8]  |
| $1p_{3/2}$                                      |      |
| $1s_{1/2}$ ———————————————————————————————————— | [2]  |

- (c) The ground state of the nucleus  $^{57}_{28}$ Ni has quantum numbers  $J^P=3/2^-$ .
  - i. Using the diagram above, find the shell model configuration for the ground state.
  - ii. The energy of the first two excitations are 769 keV and 1113 keV, with quantum numbers  $5/2^-$  and  $1/2^-$ , respectively. What are the shell model configurations of these states?
  - iii. By averaging the spin-orbital contribution to the Hamiltonian  $H_{ls} = a(l \cdot s)$  over the ground state and appropriate excited state, find the value of the spin-orbit constant a. Hence find the spin-orbit contribution to the energy of the ground state.

### Question 5 (25 marks)

### Beta decay

(a) For the following  $\beta$ -decays state whether the decay is of the Fermi type, Gamow-Teller type, both mechanisms contribute, or the decay is forbidden. Give the reasons.

(b) The energy released in tritium  $\beta$ -decay is  $\Delta E = m_{\rm H} - m_{\rm He} - m_e = 17 \, {\rm keV} \ll m_e$ . Using the Fermi golden rule

$$\lambda = 2\pi \left| V_{if} \right|^2 \rho_f, \qquad \rho_f = \frac{dn}{dE}$$

where  $V_{if}$  is the matrix element of the decay and  $\rho_f$  is the final phase space density. Assuming that the weak interaction decay matrix element is constant, derive an expression for the spectrum of  $\beta$ -electrons in tritium decay. Disregard corrections due to the Coulomb interaction in the final state.

(c) Give evidence that the weak interaction does not conserve parity.

