Midsession test

Duration: 50 minutes
University-approved calculators may be used.

Question 1 (15 marks)

The radial Schrödinger equation for a central potential in spherical coordinates, letting $\psi(r, \theta, \phi) = \frac{\chi_l(r)}{r} Y_{lm}(\theta, \phi)$, is:

$$\frac{d^2 \chi_l(r)}{dr^2} + \frac{2m}{\hbar^2} \left(E - V(r) - \frac{\hbar^2 l(l+1)}{2mr^2} \right) \chi_l(r) = 0.$$

- (a) Estimate the depth of the proton-neutron potential approximated by the spherical square well. It is known from experiment that the binding energy is close to zero (deuteron), nucleon mass $m \approx 940$ MeV, and the radius of the potential $R \approx 2$ fm.
 - (b) Compare your answer for (a) with the Coulomb interaction of two protons at a distance of 2 fm.

Hints: using units $\hbar = c = 1$,

$$1 \text{ fm}^{-1} \approx 197 \text{ MeV}$$

 $\alpha = e^2/\hbar c \approx 1/137$

Question 2 (15 marks)

- (a) Using the attached picture of single particle energy levels, find the shell model configuration for the ground state of ²⁶₁₂Mg and ²⁷₁₃Al. What are the parities and spins of these nuclei?
- (b) Calculate the magnetic moment of these nuclei using the formula

$$\mu = \begin{cases} \mu_N \left[g_l(j - 1/2) + \frac{1}{2} g_s \right], & j = l + \frac{1}{2} \\ \mu_N \left[g_l \frac{j(j + 3/2)}{j + 1} - \frac{1}{2} \frac{j}{j + 1} g_s \right], & j = l - \frac{1}{2} \end{cases}$$

where $g_l = 1$, $g_s = 5.6$ for a proton and $g_l = 0$, $g_s = -3.8$ for a neutron.

(c) The first two excited states of $^{27}_{13}$ Al have quantum numbers $J^P = 1/2^+$ and $3/2^+$. (The energies of these states are 0.844 MeV and 1.014 MeV, respectively.) Find the shell model configuration for these states.

