Mid session test, 2002 Nuclear physics

Monday, September 23, 9 - 10 am. All questions are of equal value

Question 1

- (i) Estimate the depth of the proton-neutron potential approximated by the spherical square well. It is known from experiment that the binding energy is close to zero (deuteron), nucleon mass $m \approx 940 MeV$, and radius of the potential $R \approx 2 fm$. $(fm \approx 1/197 MeV)$ in units $\hbar = c = 1$.
- (ii) Compare your answer for (i) with the Coulomb interaction of two protons at the distance 2fm ($e^2 \approx 1/137$ in units $\hbar = c = 1$).

Question 2

(a). Starting from the operator of the magnetic moment $\mu = \mu_N(g_l \mathbf{l} + g_s \mathbf{s})$, derive the shell model formulae for magnetic moment of an even-odd nucleus

$$\mu = \mu_N \left[g_l \left(j - \frac{1}{2} \right) + \frac{1}{2} g_s \right] \quad \text{if} \quad j = l + \frac{1}{2} \\ \mu = \mu_N \left[g_l \frac{j(j+3/2)}{j+1} - \frac{1}{2} \frac{j}{j+1} g_s \right] \quad \text{if} \quad j = l - \frac{1}{2},$$

where $\mathbf{j} = \mathbf{l} + \mathbf{s}$ is angular momentum of the external nucleon which coincides with the nuclear spin I. $g_l = 1$, $g_s \approx 5.6 \times 0.6$ for proton and $g_l = 0$, $g_s \approx -3.8 \times 0.6$ for neutron.

(b). (i) Using shell model energy levels presented in the picture, and results of part (a), calculate the ground state spin I, parity and magnetic moment for ${}_{6}^{11}$ C, ${}_{6}^{12}$ C, and ${}_{6}^{13}$ C nuclei.

(ii) Answer the same question but for the first excited state of ¹¹₆C.

$1d_{3/2}$	
$2s_{1/2}$	
$1d_{5/2}$	
$1p_{1/2} \ 1p_{3/2}$	
$1s_{1/2}$	