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FORMULA SHEET
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Thermodynamic Potentials
Internal energy U dU =TdS - PdV
Enthalpy H=U+PV dH =TdS + VdP
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Mathematical identities
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QUESTION 1 (5 marks)

(a) Show that the thermodynamic probability

- gj(gj - a)(gj _za)“'(gj - (Nj —1)(1)
N,

W=

Jj=1

Reduces to Maxwell-Boltzmann statistics when a =0, to Fermi-Dirac statistics when a =1,

and to Bose-Einsein statistics when a =-1.

(b) If the density of states g(e)de = (4\/§nV / h3)m3/ de, approximate the sum in the

partition function
7 = Egje—sj/kT
j=1

and show that
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(c) Calculate the internal energy and pressure for this system using

U= Nsz(aan
oT

) and P=NkT(aan).
v v J;

(d) If the Helmholtz function F' = —NkT(ln(Z/ N)+ 1) , show that the entropy of the system is
S =Nk glnT—ln(ﬁ) + 35,
2 Vv

and find the value of the constant S .



QUESTION 2 (5 marks)
(a) The classical canonical partition function is given by

Z(B) = [ exp(-PH(q.p))dqdp

where H = ﬁzpf + ®(g) is the Hamiltonian (or energy) of the system and dgdp denotes the
integral over all positions and momenta appearing in the Hamiltonian. For an ideal gas the

potential function @ is zero so the partition function can be evaluated. Show that

3N/2

Z = V" (2umkT)
(b) Find the entropy of this system given that

S = i(lenz)
oT

(c) Why is this entropy different to that obtained using the quantum approach, that is

S=NKl2 4 ln(Z) " §1n(2“msz)
27 \N) 2\

(d) How is the difference between the quantum and classical entropy usually resolved?




(5 marks)

QUESTION 3
(a) The classical grand canonical partition function is given by

EwV.1)= Yy ZINV.T).

N=0
where z is the fugacity and Z(N,V,T) is the canonical partition function. Show that the

ENZNZ(N,V,T).
N=0
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average number of particles <N > is given by
(V)=

where
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<N>=za—aZlnE

(b) If AN =N —(N)), show that (AN”) = (N*) - (N))

(c) Show that
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(d) And therefore show that




