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FINAL EXAMINATION  
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PHYS3020 

Statistical Physics 
 

Time Allowed – 2 hours 

Total number of questions - 5 

Answer ALL questions  

All questions ARE of equal value 

Candidates may not bring their own calculators. 

The following materials will be provided by the Enrolment and 

Assesment Section: Calculators. 

Answers must be written in ink. Except where they 

are expressly required, pencils may only be used 

for drawing, sketching or graphical work 
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FORMULA SHEET 
 
Boltzmann Entropy   

€ 

S = k lnW  
 
Statistics and Distributions 
 

Boltzmann 

€ 

WB = N!
g j
N j

N j!j=1

n

∏  

€ 

N j

g j

=
N
Z
e−ε j kT   

€ 

Z = g je
−ε j kT

j=1

n

∑  

 

Maxwell-Boltzmann 

€ 

WMB =
g j
N j

N j!j=1

n

∏  

€ 

N j

g j

=
N
Z
e−ε j kT  

€ 

Z = g je
−ε j kT

j=1

n

∑  

 

Fermi-Dirac 

€ 

WFD =
g j!

N j! g j − N j( )!j=1

n

∏  

€ 

N j

g j

=
1

e(ε j −µ ) kT +1
 

 

Bose-Einstein 

€ 

WBE =
(N j + g j −1)!
N j! g j −1( )!j=1

n

∏  

€ 

N j

g j

=
1

e(ε j −µ ) kT −1
 

 

Microcanonical 

€ 

fmc (q, p) =
δ H(q, p) − E( )
dqdpδ H(q, p) − E( )∫

 

 

Canonical 

€ 

fC (q, p) =
exp −βH(q, p)( )
Z(N,V ,T)

 

€ 

Z(N,V ,T) = dqdpexp −βH(q, p)( )∫  

 

Grand-canonical 

€ 

fG (q, p) =
exp β µN −H( )( )

Ξ µ,V ,T( )
 

€ 

Ξ µ,V ,T( ) = zNZ N,V ,T( )
N= 0

∞

∑  

 
Thermodynamic Potentials 
 
Internal energy 

€ 

U  

€ 

dU = TdS − PdV  
 
Enthalpy 

€ 

H =U + PV  

€ 

dH = TdS +VdP  
 
Helmholtz function 

€ 

F =U −TS  

€ 

dF = −SdT − PdV  
 
Gibbs function 

€ 

G =U −TS + PV  

€ 

dG = −SdT +VdP  
 
 
Statistical Mechanics Canonical Ensemble 
 

Internal energy 

€ 

U = kT 2 ∂lnZ
∂T

 

 
 

 

 
 
V

 Pressure 

€ 

P = kT ∂lnZ
∂V

 

 
 

 

 
 
T
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Mathematical identities 
 

€ 

lnN!≈ N lnN − N   

€ 

x 3dx
ex −10

∞

∫ =
π4

15
  

€ 

x
5

=1− e−x ⇒ x = 4.96  

 

€ 

1+ y + y 2 + ...= 1
1− y

  

€ 

dxe−x
2 α

−∞

∞

∫ = πα  

€ 

dεε1 2e−ε α
0

∞

∫ =
α
2

πα  

 

€ 

sinh(x) =
ex − e−x

2
  

€ 

d
dx
sinh(x) = cosh(x)  

€ 

csch(x) =
1

sinh(x)
 

 

€ 

cosh(x) =
ex + e−x

2
  

€ 

d
dx
cosh(x) = sinh(x)  

€ 

sech(x) =
1

cosh(x)
 

 

€ 

tanh(x) =
ex − e−x

ex + e−x
  

€ 

tanh(x) =
sinh(x)
cosh(x)

  

€ 

d
dx
tanh(x) = sech2(x)  

 

€ 

coth(x) =
ex + e−x

ex − e−x
  

€ 

coth(x) =
cosh(x)
sinh(x)

  

€ 

d
dx
coth(x) = −csch2(x)  
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QUESTION 1 (20 marks) 
 
(a) A system of four distinguishable particles has allowed nondegenerate energy levels 

€ 

0,ε,2ε,3ε,..., and has a total energy 

€ 

U = 7ε. Tabulate all possible distributions of the particles 
among the allowed energy levels. Calculate the thermodynamic weight of each macrostate 
and the average occupation number of each of the energy levels 

€ 

0,ε,2ε,3ε,.... 
 
(b) Tabulate the possible distributions if the particles are indistinguishable bosons and 
calculate the average occupation number of each level. 
 
(c) Tabulate the possible distributions if the particles are fermions and the energy levels are 
nondegenerate and calculate the average occupation number of each level. 
 
(d) In part (a), if energy level 

€ 

3ε is missing, what is the average occupation of energy level 

€ 

7ε? 
 
The partition function for a system with energy levels 

€ 

ε j , with degeneracies 

€ 

g j , is given by 
 

€ 

Z = g je
−ε j kT

j=1

n

∑  

 
(e) If the density of states function 

€ 

g(ε)dε = 4 2πV h3( )m3 2ε1 2dε , approximate the sum in 
the partition function by an integral and derive the result 
 

€ 

Z =
2πmkT
h2

 

 
 

 

 
 
3 2

V  

 
(f) Calculate the internal energy and pressure for this system. 
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QUESTION 2 (20 marks) 
 
The figure below shows the experimental values of the heat capacity 

€ 

CV nR  for hydrogen. 
 

 
 
(a) Explain the qualitative behaviour of the heat capacity from both the classical and quantum 
approach. What are the deficiencies of the classical approach? How does the quantum 
mechanical approach remedy these deficiencies? Note that   

€ 

θrot = 2 2Ik  and 

€ 

θvib = hv k . 
 
(b) If the diatomic molecules are considered to be oscillators with energy levels 

€ 

ε j = j + 1
2( )hν , show that the partition function is given by 

 

€ 

Z =
e−θ 2T

1− e−θ T  

 
(c) Derive the energy and the heat capacity for this system of oscillators. 
 
(d) Discuss the behaviour of the heat capacity as 

€ 

T→ 0 and as 

€ 

T→∞ . 
 
(e) Explain how the graph of the experimental heat capacity would change if hydrogen is 
replaced by deuterium. 
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QUESTION 3 (20 marks) 
 
(a) For a classical system of 

€ 

N  particles with Hamiltonian 
 

€ 

H =
pi
2

2mi=1

N

∑ +Φ q1,...,qN( )  

 
show that the canonical partition function is given by 
 

€ 

Z = dp1...dpN dq1...dqN exp(−βH)∫∫ = 2πmkT( )3N 2 dq1...dqN exp(−βΦ)∫  

 
(b) For an ideal gas the potential is equal to zero everywhere (except at collisions). Write 
down the ideal gas canonical partition function. 
 
(c) Use the canonical partition function to calculate the average internal energy and pressure 
of an ideal gas. 
 
(d) If the classical average of an arbitrary phase variable 

€ 

X  is given by 
 

€ 

X =
dqdpXe−βH∫
dqdpe−βH∫

, 

 
show that  
 

€ 

∂
∂β
lnZ = −U  

and 

€ 

∂2

∂β 2
lnZ = U 2 − U 2 . 

 
(e) Show that the mean square fluctuation in the internal energy 

€ 

ΔU 2 = U 2 − U 2  in the 
canonical ensemble is determined by the heat capacity at constant volume.  
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QUESTION 4 (20 marks) 
 
 (a) Photons in a cavity obey Bose-Einstein statistics. If the number of quantum states with 
frequencies in the range 

€ 

v  to 

€ 

v + dv  is 
 

€ 

g(v)dv =
8πV
c 3

v 2dv  

 
show that the energy density is 
 

€ 

u(v)dv =
8πhV
c 3

v 3dv
ehv kT −1
 

 
 

 

 
  

 
(b) Find the total energy density (energy per unit volume) by integrating over wavelength 
(

€ 

λ = c v ). If the total energy density can be written as 
 

€ 

U
V

= aT 4  

 
find the explicit expression for the constant 

€ 

a . 
 
(c) Explain how the energy density as a function of wavelength given above (Planck’s law) is 
related to the Rayleigh-Jeans law 

€ 

u(λ)dλ ≈ 8πkTVdλ λ4 , and to Wien’s law 
 

€ 

u(λ)dλ ≈V 8πhc
λ5

 

 
 

 

 
 e−hc λkT dλ . 
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QUESTION 5 (20 marks) 
 
(a) For a system of fermions where the density of states is given by 
 

€ 

g(ε)dε = 4πV 2m
h2

 

 
 

 

 
 
3 2

ε1 2dε. 

 
Show that the Fermi energy at 

€ 

T = 0 is given by 
 

€ 

µ(0) =
h2

2m
3N
8πV
 

 
 

 

 
 
2 3

 

 
(b) The internal energy of a fermion gas is 
 

€ 

U = 4πV 2m
h2

 

 
 

 

 
 
3 2

ε3 2dε
e(ε−µ ) kT +10

∞

∫  

 
Explain the interplay between the numerator and denominator of the integrand in determining 
the value of the internal energy. 
 
(c) The electronic contribution to the internal energy is 
 

€ 

U ≈
3
5
NεF 1+

5π2

12
T
TF

 

 
 

 

 
 

2

− ...
 

 
 
 

 

 
 
  

 
Find an expression for the electronic heat capacity. 
 
(d) The internal energy can be written as an infinite sum with a set of undetermined 
coefficients 
 

€ 

U =
3
5
NkTF ai

T
TF

 

 
 

 

 
 

2i

i= 0

∞

∑ , 

 
where 
 

€ 

TF =
h2

2mk
3N
8πV
 

 
 

 

 
 
2 3

. 

 
The dependence on 

€ 

T  is explicit and 

€ 

TF  is a function of 

€ 

V . Show that the entropy is given by 
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€ 

S =
1
′ T 
∂U
∂ ′ T 

d ′ T 
0

T
∫ = 3

5 NkTF
2i
2i −1

ai
T 2i−1

TF
2i

 

 
 

 

 
 

i=1

∞

∑ . 

 
Show that the Helmholtz function is 
 

€ 

F =U −TS = 3
5 NkTF 1−

ai
2i −1

T
TF

 

 
 

 

 
 

2i

i=1

∞

∑
 
 
 

  

 
 
 

  
. 

 
Hence, or otherwise, show that the relation 

€ 

P = 2
3 U V( )  is exact for the fermion gas. 

 


