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THE UNIVERSITY OF NEW SOUTH WALES 

 

SCHOOL OF PHYSICS 

FINAL EXAMINATION  

JUNE/JULY 2007 

 

 

 

PHYS3020 

Statistical Physics 
 

Time Allowed – 2 hours 

Total number of questions - 5 

Answer ALL questions  

All questions ARE of equal value 

Candidates may not bring their own calculators. 

The following materials will be provided by the Enrolment and 

Assesment Section: Calculators. 

Answers must be written in ink. Except where they 

are expressly required, pencils may only be used 

for drawing, sketching or graphical work 
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FORMULA SHEET 
 
Boltzmann Entropy   

€ 

S = k lnW  
 
Statistics and Distributions 
 

Boltzmann 

€ 

WB = N!
g j
N j

N j!j=1

n

∏  

€ 

N j

g j

=
N
Z
e−ε j kT   

€ 

Z = g je
−ε j kT

j=1

n

∑  

 

Maxwell-Boltzmann 

€ 

WMB =
g j
N j

N j!j=1

n

∏  

€ 

N j

g j

=
N
Z
e−ε j kT  

€ 

Z = g je
−ε j kT

j=1

n

∑  

 

Fermi-Dirac 

€ 

WFD =
g j!

N j! g j − N j( )!j=1

n

∏  

€ 

N j

g j

=
1

e(ε j −µ ) kT +1
 

 

Bose-Einstein 

€ 

WBE =
(N j + g j −1)!
N j! g j −1( )!j=1

n

∏  

€ 

N j

g j

=
1

e(ε j −µ ) kT −1
 

 

Microcanonical 

€ 

fmc (q, p) =
δ H(q, p) − E( )
dqdpδ H(q, p) − E( )∫

 

 

Canonical 

€ 

fC (q, p) =
exp −βH(q, p)( )
Z(N,V ,T)

 

€ 

Z(N,V ,T) = dqdpexp −βH(q, p)( )∫  

 

Grand-canonical 

€ 

fG (q, p) =
exp β µN −H( )( )

Ξ µ,V ,T( )
 

€ 

Ξ µ,V ,T( ) = zNZ N,V ,T( )
N= 0

∞

∑  

 
Thermodynamic Potentials 
 
Internal energy 

€ 

U  

€ 

dU = TdS − PdV  
 
Enthalpy 

€ 

H =U + PV  

€ 

dH = TdS +VdP  
 
Helmholtz function 

€ 

F =U −TS  

€ 

dF = −SdT − PdV  
 
Gibbs function 

€ 

G =U −TS + PV  

€ 

dG = −SdT +VdP  
 
 
Statistical Mechanics Canonical Ensemble 
 

Internal energy 

€ 

U = kT 2 ∂lnZ
∂T

 

 
 

 

 
 
V

 Pressure 

€ 

P = kT ∂lnZ
∂V

 

 
 

 

 
 
T
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Mathematical identities 
 

€ 

lnN!≈ N lnN − N   

€ 

x 3dx
ex −10

∞

∫ =
π4

15
  

€ 

x
5

=1− e−x ⇒ x = 4.96  

 

€ 

1+ y + y 2 + ...= 1
1− y

  

€ 

dxe−x
2 α

−∞

∞

∫ = πα  

€ 

dεε1 2e−ε α
0

∞

∫ =
α
2

πα  

 

€ 

sinh(x) =
ex − e−x

2
  

€ 

d
dx
sinh(x) = cosh(x)  

€ 

csch(x) =
1

sinh(x)
 

 

€ 

cosh(x) =
ex + e−x

2
  

€ 

d
dx
cosh(x) = sinh(x)  

€ 

sech(x) =
1

cosh(x)
 

 

€ 

tanh(x) =
ex − e−x

ex + e−x
  

€ 

tanh(x) =
sinh(x)
cosh(x)

  

€ 

d
dx
tanh(x) = sech2(x)  

 

€ 

coth(x) =
ex + e−x

ex − e−x
  

€ 

coth(x) =
cosh(x)
sinh(x)

  

€ 

d
dx
coth(x) = −csch2(x)  
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QUESTION 1 (20 marks) 
 
(a) A system of four distinguishable particles has allowed nondegenerate energy levels 

€ 

0,ε,2ε,3ε,..., and has a total energy 

€ 

U = 6ε . Tabulate all possible distributions of the particles 
among the allowed energy levels. Calculate the thermodynamic weight of each macrostate 
and the average occupation number of each of the energy levels 

€ 

0,ε,2ε,3ε,.... 
 
(b) Tabulate the possible distributions if the particles are indistinguishable bosons and 
calculate the average occupation number of each level. 
 
(c) Tabulate the possible distributions if the particles are fermions and the energy levels are 
nondegenerate and calculate the average occupation number of each level. 
 
(d) In part (a), if energy level 

€ 

3ε is missing, what is the average occupation of energy level 

€ 

6ε? 
 
The partition function is given by 
 

€ 

Z = g je
−ε j kT

j=1

n

∑  

 
(e) If the density of states 

€ 

g(ε)dε = 4 2πV h3( )m3 2ε1 2dε , approximate the sum by an integral 
and derive the result 
 

€ 

Z =
2πmkT
h2

 

 
 

 

 
 
3 2

V  

 
(f) Calculate the internal energy and pressure for this system. 
 
(g) Calculate the heat capacity at constant volume. 
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QUESTION 2 (20 marks) 
 
(a) For a classical system of 

€ 

N  particles with Hamiltonian 
 

€ 

H =
pi
2

2mi=1

N

∑ +Φ q1,...,qN( )  

 
show that the canonical partition function is given by 
 

€ 

Z = dp1...dpN dq1...dqN exp(−βH)∫∫ = 2πmkT( )3N 2 dq1...dqN exp(−βΦ)∫  

 
(b) For an ideal gas the potential is equal to zero everywhere (except at collisions). Write 
down the ideal gas canonical partition function. 
 
(c) Use the canonical partition function to calculate the average internal energy and pressure 
of an ideal gas. 
 
(d) The classical entropy is given by 
 

€ 

S =
∂
∂T

kT lnZ( ) . 

 
Write the entropy as a function of 

€ 

T  and 

€ 

V . 
 
(e) Calculate the internal energy for the non-ideal gas partition function given in part (a). 
What does the result suggest about kinetic and potential contributions to the internal energy? 
 
(f) Why is it difficult to calculate the pressure for the non-ideal gas in the same way we 
calculated it for the ideal gas? 
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 QUESTION 3 (20 marks) 
 
A dipole with magnetic moment 

€ 

µ in an external magnetic field 

€ 

B will experience a torque 

€ 

N given by 
 

€ 

N = µ ×B . 
 
The magnetic potential energy 

€ 

ε is the work done to rotate the dipole from its zero energy 
position 

€ 

θ = π
2  

 

€ 

ε = Nd ′ θ 
π 2

θ

∫  

 
(a) Show that 

€ 

ε = −µ ⋅B = −µzB . 
 
The magnetic energy of an atom in quantum state 

€ 

m  is 

€ 

εm = −gµBBm  where 

€ 

m  is within the 
range 

€ 

−J ≤ m ≤ J . Here 

€ 

g  is the Landé 

€ 

g-factor and   

€ 

µB = e 2me  is the Bohr magneton. Each 
atom is in a localized position within a crystal and thus the atoms are distinguishable. Using 
Boltzmann statistics the probability of state 

€ 

m  is 
 

€ 

Pm =
Nm

N
=
exp −εm kT( )

Z
. 

 
(b) Write down the partition function for this system. 
 
The mean 

€ 

z -component of the magnetic moment is 
 

€ 

µ z = µzPm
m=−J

J

∑ =
1
Z

gµBmexp gµBBm kT( )
m=−J

J

∑  

 
(c) Show that 

€ 

µ z can be written as the derivative of the logarithm of the partition function. 
 
(d) If we let 

€ 

η = gµBB kT  and write 

€ 

x = exp η( ) = exp gµBB kT( ) , then show that the partition 
function can be written as 
 

€ 

Z =
sinh J + 1

2( )η
sinh η 2( )

 

 
(e) Hence show that 

€ 

µ z = gµBJBJ (η) and thus determine the Brillouin function 

€ 

BJ (η)  in its 
simplest form. 
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QUESTION 4 (20 marks) 
 
For a system of fermions where the density of states is given by 
 

€ 

g(ε)dε = 4πV 2m
h2

 

 
 

 

 
 
3 2

ε1 2dε. 

 
(a) Show that the Fermi energy at 

€ 

T = 0 is given by 
 

€ 

µ(0) =
h2

2m
3N
8πV
 

 
 

 

 
 
2 3

 

 
The internal energy of a fermion gas is 
 

€ 

U = 4πV 2m
h2

 

 
 

 

 
 
3 2

ε3 2dε
e(ε−µ ) kT +10

∞

∫  

 
(b) Explain the interplay between the numerator and denominator of the integrand in 
determining the value of the internal energy. 
 
The electronic contribution to the internal energy is 
 

€ 

U ≈
3
5
NεF 1+

5π2

12
T
TF

 

 
 

 

 
 

2

− ...
 

 
 
 

 

 
 
  

 
(c) Find and expression for the electronic heat capacity. 
 
(d) Why is the electronic heat capacity much smaller than the heat capacity associated with 
other degrees of freedom? 
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QUESTION 5 (20 marks) 
 
(a) A Bose gas at low temperature (

€ 

T < TB , where 

€ 

TB  is the Bose temperature) has an internal 
energy of 
 

€ 

U = 0.77NkT T
TB

 

 
 

 

 
 

3 2

 

 
determine the heat capacity at constant volume. 
 
(b) As the result for the heat capacity is correct at zero temperature, we can calculate the 
entropy by integrating the heat capacity 
 

€ 

S =
CV

′ T 
d ′ T 

0

T

∫ . 

 
(c) Thus show that the Helmholtz function is given by 
 

€ 

F = −0.51NkT T
TB

 

 
 

 

 
 

3 2

 

 
(d) In the Bose temperature is given by 
 

€ 

TB =
h2

2πmk
N

2.612V
 

 
 

 

 
 
2 3

 

 
use the Helmholtz function to find the pressure. 
 

(e) Hence show that 

€ 

P =
2U
3V

. 

 
(f) Discuss possible connections between the 
theoretical Bose-Einstein condensation and the 
experimentally observed lambda transition between 
Helium I and Helium II. 
 
 
 
  


