
1 

THE UNIVERSITY OF NEW SOUTH WALES 

 

SCHOOL OF PHYSICS 

FINAL EXAMINATION  

JUNE/JULY 2006 

 

 

 

PHYS3020 

Statistical Physics 
 

Time Allowed – 2 hours 

Total number of questions - 5 

Answer ALL questions  

All questions ARE of equal value 

Candidates may not bring their own calculators. 

The following materials will be provided by the Enrolment and 

Assesment Section: Calculators. 

Answers must be written in ink. Except where they 

are expressly required, pencils may only be used 

for drawing, sketching or graphical work 
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FORMULA SHEET 
 
Boltzmann Entropy   

€ 

S = k lnW  
 
Statistics and Distributions 
 

Boltzmann 

€ 

WB = N!
g j
N j

N j!j=1

n

∏  

€ 

N j

g j

=
N
Z
e−ε j kT   

€ 

Z = g je
−ε j kT

j=1

n

∑  

 

Maxwell-Boltzmann 

€ 

WMB =
g j
N j

N j!j=1

n

∏  

€ 

N j

g j

=
N
Z
e−ε j kT  

€ 

Z = g je
−ε j kT

j=1

n

∑  

 

Fermi-Dirac 

€ 

WFD =
g j!

N j! g j − N j( )!j=1

n

∏  

€ 

N j

g j

=
1

e(ε j −µ ) kT +1
 

 

Bose-Einstein 

€ 

WBE =
(N j + g j −1)!
N j! g j −1( )!j=1

n

∏  

€ 

N j

g j

=
1

e(ε j −µ ) kT −1
 

 
 
Thermodynamic Potentials 
 
Internal energy 

€ 

U  

€ 

dU = TdS − PdV  
 
Enthalpy 

€ 

H =U + PV  

€ 

dH = TdS +VdP  
 
Helmholtz function 

€ 

F =U −TS  

€ 

dF = −SdT − PdV  
 
Gibbs function 

€ 

G =U −TS + PV  

€ 

dG = −SdT +VdP  
 
 
Statistical Mechanics Canonical Ensemble 
 

Internal energy 

€ 

U = NkT 2 ∂lnZ
∂T

 

 
 

 

 
 
V

 Pressure 

€ 

P = NkT ∂lnZ
∂V

 

 
 

 

 
 
T

 

 
Mathematical identities 
 

€ 

lnN!≈ N lnN − N   

€ 

x 3dx
ex −10

∞

∫ =
π4

15
  

€ 

x
5

=1− e−x ⇒ x = 4.96  

 

€ 

1+ y + y 2 + ...= 1
1− y

  

€ 

dxe−x
2 α

−∞

∞

∫ = πα  

€ 

dεε1 2e−ε α
0

∞

∫ =
α
2

πα  
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QUESTION 1 (20 marks) 
 
(a) A system of three distinguishable particles has allowed nondegenerate energy levels 

€ 

0,ε,2ε,3ε,..., and has a total energy 

€ 

U = 3ε . Tabulate all possible distributions of the particles 
among the allowed energy levels. Calculate the thermodynamic weight of each macrostate 
and the average occupation number of each of the energy levels 

€ 

0,ε,2ε,3ε,.... 
 
(b) Tabulate the possible distributions if the particles are indistinguishable bosons and 
calculate the average occupation number of each level. 
 
(c) Tabulate the possible distributions if the particles are fermions and the energy levels are 
nondegenerate and calculate the average occupation number of each level. 
 
(d) Consider the dilute gas limit (

€ 

N j << g j ) for both Bose-Einstein and Fermi-Dirac statistics. 
Hence derive Maxwell-Boltzmann statistics 
 

€ 

WMB =
g j
N j

N j!j
∏  

 
How does this differ from Boltzmann statistics? 
 
(e) If 

€ 

x = (ε j −µ) kT , draw a graph of 

€ 

N j g j  versus 

€ 

x  for Bose-Einstein, Fermi-Dirac and 
Maxwell-Boltzmann statistics. 
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QUESTION 2 (20 marks) 
 
The figure below shows the experimental values of the heat capacity 

€ 

CV nR  for hydrogen. 
 

 
 
(a) Explain the qualitative behaviour of the heat capacity from both the classical and quantum 
approach. What are the deficiencies of the classical approach? How does the quantum 
mechanical approach remedy these deficiencies? Note that   

€ 

θrot = 2 2Ik  and 

€ 

θvib = hv k . 
 
(b) If the diatomic molecules are considered to be oscillators with energy levels 

€ 

ε j = j + 1
2( )hν , show that the partition function is given by 

 

€ 

Z =
e−θ 2T

1− e−θ T  

 
(c) Derive the energy and the heat capacity for this system of oscillators. 
 
(d) Discuss the behaviour of the heat capacity as 

€ 

T→ 0 and as 

€ 

T→∞ . 
 
(e) In reference to the heat capacity for hydrogen given in the graph above, how would this 
change if deuterium is used in place of normal hydrogen. 
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QUESTION 3  (20 marks) 
 
 (a) The classical grand canonical partition function is given by 
 

€ 

Ξ(µ,V ,T) = eβµNZ(N,V ,T)
N= 0

∞

∑ = zNZ(N,V ,T)
N= 0

∞

∑ . 

 
where 

€ 

z = exp(βµ) is the fugacity and 

€ 

Z(N,V ,T)  is the canonical partition function. Show 
that the average number of particles 

€ 

N   
 

€ 

N =
1
Ξ

NzN
N= 0

∞

∑ Z(N,V ,T) = z ∂
∂z
lnΞ .  

 
That is, if the first equality defines the average 

€ 

N , derive the second equality. 
 
(b) If 

€ 

ΔN = N − N , show that 

€ 

ΔN 2 = N 2 − N 2. 
 
(c) Derive the following expression for the fluctuations in the average number of particles,  
 

€ 

ΔN 2
= z2 ∂

2

∂z2
lnΞ+ z ∂

∂z
lnΞ . 

 
(d) The thermodynamic potential for the grand partition function is  
 

€ 

Ω(T,V ,µ) = −kT lnΞ =U −TS −µN  
 
What can be said about the behaviour of the relative fluctuations in the number of particles 

€ 

ΔN 2 N . 
 
 
 



6 

QUESTION 4 (20 marks) 
 
(a) Photons in a cavity obey Bose-Einstein statistics. If the number of quantum states with 
frequencies in the range 

€ 

v  to 

€ 

v + dv  is 
 

€ 

g(v)dv =
8πV
c 3

v 2dv  

 
show that the energy density is 
 

€ 

u(v)dv =
8πhV
c 3

v 3dv
ehv kT −1
 

 
 

 

 
  

 
(b) Find the total energy density (energy per unit volume) by integrating over wavelength 
(

€ 

λ = c v ). If the total energy density can be written as 
 

€ 

U
V

= aT 4  

 
find the explicit expression for the constant 

€ 

a . 
 
(c) Find the wavelength for which the 

€ 

u(λ) is a maximum. 
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QUESTION 5 (20 marks) 
 
 (a) For a system of fermions where the density of states is  
 

€ 

g(ε)dε = 4πV 2m
h2

 

 
 

 

 
 
3 2

ε1 2dε, 

 
show that the chemical potential at 

€ 

T = 0 (that is the Fermi energy 

€ 

εF = µ(0) ) is given by 
 

€ 

µ(0) =
h2

2m
3N
8πV
 

 
 

 

 
 
2 3

. 

 
(b) For 

€ 

T ≠ 0 the chemical potential can be approximated by 
 

€ 

µ(T) = µ(0) −αT 2 
 
Find the change in the Fermi-Dirac distribution as a function of 

€ 

T . 
 
(c) Assuming this new distribution can be approximated by 
 

€ 

fT (ε) ≈ exp −
αT
k

 

 
 

 

 
 fT= 0(ε) 

 
Derive an expression for the proportion of fermions below the Fermi energy 

€ 

µ(0). 
 
 


