Mid session test 2002 Thermal Physics 2060

Time: 1 hour.

Total number of questions 2. Answer all the questions.

Question 1

Consider van der Waals equation of state $\left(P + \frac{a}{v^2}\right)(v - b) = RT$.

- a. (4 marks) Sketch van der Waals isotherms (lines T = const) on the P V-diagram. Clearly indicate the regions corresponding to the gas phase, the liquid phase, and the mixed state. Clearly indicate the critical point.
- **b.** (3 marks) Sketch van der Waals *isotherms* on the P-T-diagram. Clearly indicate the regions corresponding to the gas phase and the liquid phase. Clearly indicate the critical point. Where is the mixed state on this diagram?
- c. (3 marks) Derive an expression for the *isothermal* compressibility of an **ideal** gas. The compressibility is defined as $k = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T$. Express your answer in terms of pressure and appropriate constants.

Question 2

An ideal gas is cycled through: Isobaric expansion from a to b, adiabatic expansion from b to c, isobaric compression from c to d, adiabatic compression from d to a.

- a. (4 marks) (i) Clearly indicate on the diagram at which parts of the cycle the heat flows in and out of the system. (ii) How the work W done in the cycle is related to influx and outflux of the heat? (iii) Give definition of thermal efficiency η of the cycle.
- b. (6 marks) Derive an expression for the thermal efficiency η in terms of P_1 and P_2 . You may use without proof the relation $PV^{\gamma} = const$ for the adiabatic processes and the fact that the heat capacity C_p is independent of temperature.

Hint: it is convenient to introduce temperatures T_a , T_b , T_c , T_d and volumes V_a , V_b , V_c , V_d corresponding to points a, b, c, and d, and then exclude temperatures and volumes from the expression for η