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Question 1 (10 marks) 

a) From geometric considerations, derive an expression for the Newton-Raphson 
(Newton's) method for finding the roots of a non-linear equation for which 
you have the explicit form of the equation, 
y = J(x), 
and an initial approximation to the root of Xo. 

The expression should clearly show how to find the next approximation to the 
root, XI, in terms ofJ(x) and X o. Illustrate your answer with a clear sketch (or 
sketches) showing how Newton's method works. Mark on your sketch the 
position of both X o and XI, and show how they are related. 

b) Briefly state the main differences between the bisection method and Newton's 
method for finding the roots of an equation in terms of robustness and time 
taken to converge. 

c) Using pseudocode and / or the C programming language, write a program 
which uses the bisection method to find the single root of the equation 

Xl -2x- 2 
on the interval 1 $; x$;2, to a precision of±O.l. 

d) Use the bisection method to find the root of equation in part (c), on the given 
interval. The precision required is ±O.l. 

e) Briefly state why using a computer to generate random numbers might not 
produce the results expected if many trials for an experiment are conducted? 
Discuss how this problem can be overcome for generating random numbers in 
the C language. You do not need to use the C keywords, but you must clearly 
describe the concepts involved. 

, 



Question 2 (1 0 marks) 

a) Explain in simple words, what is meant by a Fourier decomposition of a time
varying signal, yet) . 

b) What physical quantity will the Fourier transform F, of the spatially varying 
signal y(x) be a function of? (i.e. what is the other member of the Fourier 
transform pair involving a quantity varying as a function of space?) 

c) In experimental situations, an analytical form of the function yet) (i.e. a time
varying signal) is unlikely to be known. Instead, we generally have a series of 
discrete measurements of y at time t, for which we can use a discrete Fourier 
transform (DFT). 

I. Explain how the data should be spaced in time to use a DFT. 

11. If there are m discrete measurements of y as a function of t, 
how many discrete frequencies will be recoverable from the 
data. 

111. State the Nyquist frequency in terms of the time sampling 
interval, L\t, and explain how this limits the frequencies that 
may be recovered from the data. 

d) Why is a fast Fourier transform (FFT) algorithm usually used instead of a 
DFT? Your answer should give an approximation in both cases of the number 
of operations required to transform N data points for both algorithms. What 
extra constraint do the most common FFT algorithms place on the number of 
measured data points, N. Is this a hard constraint on the actual number of 
measurements that needs to be made? Explain why or why not. 

e) A general sinusoidal wave has an equation of the form 
y(x,t) = A cos[kx - (tJt + 90] where y is the displacement of the medium at time 
t and position x, A is the amplitude of the wave, k is the wavenumber, (tJis the 
angular frequency and rfJo is the initial phase angle. Starting with this equation, 
derive a form of the wave equation which is independent of k and liJ, but 
which does depend on the wave speed in the medium. 



Question 3 (8 marks) 

The first order ordinary differential equation (ODE) 

dy =2xy 
dx 

can be solved using Euler' s method. Given an initial condition (xo, yo), successive 
points on the solution curve (x, y(x)) can be generated by taking equal steps of size h 
in the independent variable x, and detennining the new y value using 
y ;+! = y; + hf(x;, y ;). The numerical solution is then a set of points that approximate 

the solution curve. A second method of solution is the modified Euler method 

[ 
h h ] y,+! = y;+hj x; +"2'y; + "2 !(x"y,) 

a) Explain the operation of the simple and modified Euler methods in 
geometrical tenTIs. 

b) Use the simple Euler method to solve the ODEy' = 2xy, given that f(O)=I , on 
the interval 0 ~ x ~ 2 for a step size of 0.5. 



Question 4 (8 marks) 

The table below shows experimental measurements of displacement, y, at a time x. Fit 
an approximating polynomial function to the data by following the steps below to 
make the fit. 

x 

o 

2 

3 

4 

5 

6 

a) Complete the following difference table. Make sure you complete the table in 
your book, not on this exam paper! 

y t;. /'12 t;.l t;.4 

1 

0 

3 

16 

45 

96 

17 5 

b) What order polynomial would you consider the most appropriate to fit the 
above data set? Why? 

c) Use the Gregory Newton equation 

d) y = f(x) = f(a) + '!'(x - a)/'1+ ~_l (x - a)(x - a -1 )t;.2 + ~_l (x - a)(x - a -l)(x - a - 2}1'1' + ... 
h 2! h' 3! hJ 

to approximate the polynomial of whichever order you think is most 
appropriate. Is the polynomial an exact fit to the measured data? (Hint: use the 
first and last x values to see if you can reproduce the exact y value.) 



Question 5 (4 marks) 

When fitting a line of the form 
y =ax+ b 

to a set of data points, the coefficients a and b can be determined via the technique of 
least squares. 

a) Briefly describe how the least-squares criteria determine an objective "line of 
best fit" for a data set. You may assume that we are concerned with the 
uncertainty in the "y" value only. Illustrate your answer with a hypothetical 
graph with 5 points scattered around a line-of-best-fit by drawing on this graph 
the geometric quantity to be minimised. 

b) The coefficients a and b are given by 

n 11 11 

Lx(i)Ly(i) - N L(x(i)y(i)) 

a = ;- l[t,~~li)J _~il(X(i))'] 

n n n n 

L x(i)L(x(i)y(i) )- L(x(i))' L y(i) 

Find the equation for the line of best fit for the following data set. 

X 
-2 
-1 
o 
1 
2 

y 

-7 
-8 
-2 
-1 
5 

QUESTION CONTINUES ON FOLLOWING PAGE 



c) The correlation coefficient is given by 

n _ 2 

LV(i)-Y) 
;=] 

Calculate the cOlTelation coefficient for the above data. Is the least squares line 
a good fit to the above data. Give a valid reason for your answer. 




