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QUESTION 1. (20 marks)

a) The following piece of fortran code has been written to find the roots of a function using
the bisection method.

f(x) = x**4 - 4*x**3 + 4.75*x**2 - 1.5*x
eps = l.e-5
READ(*,*) a,b

DO i =1, 20
xm = 0.5*(a+b)
WRITE(*,*) a, xm, b

IF (ABS(f(xm)) < eps) THEN
WRITE(*,*) 'Root is ',xm,i
PAUSE
STOP

ENDIF

IF (f(a)*f(xm) < 0.0) THEN
b = xm
ELSE
a = xXm
ENDIF
ENDDO

WRITE(*,*) i,' End of loop'

PAUSE
END

The function f(x)=x*—4x>+ Be 3,- x(x - l)(x - 2)(x -2)
4 2 2 2

has roots at x =0, %, % and 2. If for input we choose a =0 and b =2, determine the output

from the program, and hence determine which root the bisection scheme converges to.




b) The forward-difference operators are defined by
Af(x)= f(x+h)— f(x)
A f(x)= Af(x+h) = Af (x)
Nf(x)=Af(x+h)-Af(x)

Calculate all forward-differences for the following set of function values:

X; f(x) Af Af Af
0

1 1

2 6

3 16

Newton's fundamental formula for the interpolating polynomial is

f(xo + ah) = f(xo)-i- aAf(x0)+MA2f(xo)+ a(a-1)(x-2)

3
Y 3t A f(xp)t...

Find the third order polynomial approximation to the function using the values in the table

above.




QUESTION 2. (20 marks)

a) Using Newton's forward formula, the linear polynomial approximation to a function f(x)

is given by
F(x) = f(x,) + 0Af (%) + R (x)

where x = x, + ath, h=x, -x,, the forward difference Af(x,)= f(x,)— f(x,), and the error

term is
a(a-1) .,
Rl(x)=h2——(—i'—)f (§) where x,<E<x

Using the linear polynomial approximation for f(x) given above, show that the single strip
trapezoidal approximation to the integral I(p,), is given by

I h L
I(p)= [ fx) dx=Z(f0x)+ () =5 )
b) Calculate the one strip trapezoidal rule estimate for the integral
( X
I= Idxtan(—)
° 4

¢) Derive the n strip trapezoidal approximation error term.

d) How many strips are required to calculate this integral to an accuracy of +0.0001?

2 2A -
Note that, d—ztan(ﬂ) _ (‘_ﬂ:_) 2 81131 X
dt 4 4) cos®x




QUESTION 3. (20 marks)

The first order ordinary differential equation

% = f(xy)

can be solved using Euler's method. Given an initial condition (x,,Y,), successive points on
the solution curve (x,y(x)) can be generated by taking equal steps of size A in the
independent variable x, and determining the new y value using, y,,, =y, + bf (x;,y,). The
numerical solution is then a set of points that approximate the solution curve. A second
method of solution is the improved Euler method

ior =i+ 2 (£ + £+ By, + o)

a) Explain the operation of these two schemes in geometrical terms, and comment on their
relative accuracies.

b) Apply both the Euler and improved Euler methods to the solution of f(x,y) = nx""'y with
the initial condition (x,,y,) =(0,1) . Use a step size of h=1.0, and calculate the value of y at
x = 1. Compare with the exact result at x=1, y = ¢, where e =2.718212. What is special
about the value n=1?

¢) Is the modified Euler scheme,

Vi =Y HHf(x; +%ha)’i +%hf(xi’yi))

a better method for this function?




QUESTION 4. (20 marks)

a) A given set of data points {x,,y,} obtained from an experiment are believed to obey a
quadratic law, y = a, + a,x + a,x*. The equation for a parabola has three coefficients q,, a;,
and a,. If we define the total error E(a,,a,,a,), as

E(ay.a,a,) = 2"‘,{00 +ax +axi-yY,
i=1

determine the least squares best fit parabola by minimising the total error with respect to
variations in the coefficients a,, a,, and a,. Hence find the matrix equation for the
coefficients as functions of the data points.

b) To construct Newton-Cotes open integration formulas that use equally spaced base points
we consider Newton's fundamental formula based on x,, rather than x,. That is

fx, +ah) = £(x)+ aAf(x) + “—(9’-2‘,"—”A2f(x,) ¥

a(a-1)(ax-2)

3 A f(x ...

Show how the first two open formulas are obtained by integrating this function. That is,
derive

[ flydx=2hf(x)
and

[ s =2 (1) + £)



QUESTION 5. (20 marks)
For Gaussian integration on the interval [-1,1] we can use the polynomials
p(¥)=1, p(X)=x, p,xX)=x"-§, p(x)=x"-%x.

The polynomial p;(x) can be shown to have exactly j distinct roots in the interval. Moreover,
the roots of p;(x) are interleaved with the roots of p;,,(x).

a) Explain why Gaussian integration with two basis points is more accurate than any of the
usual Newton-Cotes methods with two basis points.

b) Construct a numerical scheme to find all the roots of the polynomials for j =1to10.

Discuss any standard methods you use and justify the particular choice of method.

DO NOT write any FORTRAN CODE for this question.



