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FORMULA SHEET 
 
Damped Harmonic Motion 
 

� 

m˙ ̇ x + b˙ x + kx = 0  
 

� 

x = Aeqt  
 

� 

q = −γ ± γ 2 −ω0
2  

 

� 

γ = b
2m

 

 

� 

ω0
2 = k

m
 

 
Forced Harmonic Motion 
 
 

� 

m˙ ̇ x + b˙ x + kx = 0  
 

� 

x = Acos ωt −ϕ( )  

 

� 

A = F0
m ω 2 −ω0

2( )2 + 4γ 2ω 2
 

 

� 

tanϕ = 2γω
ω0
2 −ω 2  

 

� 

ωr
2 = ω0

2 − 2γ 2 

 

� 

Q =
ω0
2 − γ 2

2γ
 

 
 
Central field 
 

 

� 

Ueff (r) = M 2

2mr2
+U(r)  

 

� 

ϕ = ±
M r2( )dr

2m E −Ueff (r)[ ]
∫  

 

� 

t = ±m dr
2m E −Ueff (r)[ ]

∫  

 
Lagrangian 
 
 

� 

L = T −U  
 

 

� 

d
dt

∂L
∂ ˙ q i

= ∂L
∂qi
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Question 1 
 
Part A 
 
A force is given by: 
 

� 

F x,y,z( ) = 2xy + z3( )i + x 2j+ 3xz2k  
 

(a) Show that this force is conservative. 
(b) Find the potential energy, V. 
(c) Determine the work done in moving an object in this force field from 

(1,-2,1) to (3,1,4). 
 
Part B 
 
Suppose that the force acting on a particle can be expressed in one of the 
following forms: 
 

(d) 

� 

F ˙ x ,t( ) = f ˙ x ( )g t( )  
(e) 

� 

F x, ˙ x ( ) = f x( )g ˙ x ( ) 
(f) 

� 

F(x, ˙ x ,t) = k x + ˙ x t( )  
(g) 

� 

F x, t( ) = f x( )g t( )  
 
In each case, determine whether the equations of motion integrable and if 
they are, demonstrate how they are integrable and, if possible, integrate them. 
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Question 2 
 
The equation of motion of a damped harmonic oscillator is given by: 
 

� 

m˙ ̇ x + c˙ x + kx = 0 
 
where m is the mass of the particle, c is the damping coefficient and k is the 
coefficient of the restoring force.  The above oscillator is driven by a harmonic 
driving force given by: 
 

� 

F t( ) = Foe
iωt  

 
On solving the equations of motion for this driven damped harmonic oscillator, 
one finds that the amplitude, A(ω), as a function of frequency is given by: 
 

� 

A ω( ) =
Fo
m

ωo
2 −ω 2( )2 + 4γ 2ω 2[ ]

1
2

 

 
(a) Explain the meaning of all the symbols in the equation for A(ω). 
(b) Derive an equation for the resonant frequency of the system. 
(c) Derive the equation for the amplitude of the driven oscillation at the 

resonant frequency. 
(d) Sketch A(ω) as a function of ω for various values of γ.  Be sure to 

plot and label curves where the behaviour of the system changes. 
(e) Discuss how the resonance (and the parameters characterising it) 

vary with damping. 
 
 
The phase shift in the driven damped harmonic oscillator is given by: 
 

� 

tan φ ω( )( ) = 2γω
ωo
2 −ω 2  

 
(f) Explain the meaning of this equation. 
(g) Plot φ as a function of ω for several values of γ.  Label all important 

parameters on your graph (common points, asymptotes, inflection 
points etc). 

(h) Discuss the features of this graph and how they relate to the 
resonant frequency. 
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Question 3 
 
A simple pendulum consists of a mass, m, attached to a rigid massless rod of 
length, l.  The rod plus mass can freely rotate around a pivot point located at 
the end of the rod opposite the mass.  This pendulum hangs in a laboratory 
under the gravitational field of the earth. 
 

(a) Determine the number of degrees of freedom required to describe the 
motion of this system. 

 
Select suitable generalised coordinate(s) to describe the state of the simple 
pendulum. 
 

(b) Derive equations for the kinetic and potential energies of the simple 
pendulum. 

(c) Hence (or otherwise), determine the Lagrangian for this system. 
(d) Use Lagrange’s equations to determine the equation(s) of motion for 

this system. 
(e) Plot a graph of the potential energy as a function of your generalised 

coordinate(s).   
(f) Plot a velocity phase space portrait describing the motion of this simple 

pendulum.  Label the axes and mark the separatrix. 
(g) Describe the behaviour of the system as a function of total energy.  

Refer to your potential energy plot and the velocity phase space 
portrait. 

 
A second simple pendulum, identical to the first, is suspended on a pivot 
attached to the mass of the first pendulum, creating a double pendulum 
system. 
 

(h) Sketch the double pendulum and use your sketch to define the 
generalised coordinates describing its motion. 

(i) Find the Lagrangian for the double pendulum system. 
(j) Derive the equations of motion for the system. 
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Question 4 
 
A central force is given by: 
 

� 

f r( ) = − k
r3

 

 
where k is a constant and r is the distance from the centre.  An object of mass 
m moves under the influence of this central force. 
 

(a) Show that the potential producing this force is given by: 
 

� 

V r( ) = − k
2r2

 

 
(b) Derive an expression for the effective potential, U(r), of the particle, 

mass m, moving in this central field. 
 
The form of the equation for the effective potential produces three distinct 
curves that depend on the values of the parameters: m, the particle mass; h 
(or l), the angular momentum per unit mass; and k, the force constant. 
 

(c) Sketch the three possible effective potential curves for this central 
force as a function of radius.  Label each curve with the conditions 
on m, h (or l) and k that are appropriate to the curve. 

(d) What type of motion will be experienced by the particle in each of 
the three cases? 

(e) Use Newton’s second law (or otherwise) to show that the equation 
of motion for the particle reduces to: 

 

� 

˙ ̇ r + 1
r3

k
m

− h2⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = 0 

 
(f) Hence show that the orbit equation for the particle is given by: 

 

� 

d2u
dθ 2

− u k
mh2

−1
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = 0 

where u=1/r and θ is the angle in plane polar coordinates. 
 
In a real case, k would be fixed by the nature of the force and m would be 
fixed by the nature of the particle, thus, the angular momentum per unit mass, 
h (or l), determines the type of motion observed. 
 

(g) Discuss the physical significance of the transition between the types 
of motion produced by varying h (or l). 
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 Question 5 
 
Part A 
 

(a) Show that the Lagrangian for a general vibrating system is given 
by: 
 

� 

L = 1
2

M jk ˙ q j ˙ q k −K jkq jqk( )
k
∑

j
∑  

 
Explain the meaning of all symbols in this equation. 

(b) Derive the equations of motion of this system. 
(c) Hence show that the n roots of the secular determinant are the 

squares of the normal frequencies of the system. 
 
Part B 
 
Show your understanding of the above theory by working through an 
example.  
 
Select an example of coupled harmonic oscillators (your choice!!). 
 

(d) Sketch the system of your choice, clearly labelling the 
generalised coordinates used to determine the equations of 
motion of the system. 

(e) Find the Lagrangian for your system. 
(f) Use Lagrange’s equations to derive the equations of motion for 

your system. 
(g) Making any necessary approximations, derive the secular 

equation for your system. 
(h) Solve the secular equation for the normal frequencies of the 

system. 
(i) Sketch the motions that correspond to the normal modes 

associated with each normal frequency. 
 
 
 
 
 


