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The following equations are supplied as an aid to memory.

i

aZ

dx 1

aoX
- = — tan” =
+ X a a

Damped Harmonic Motion
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Forced Harmonic Motion
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Inverse Square Law Orbits
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QUESTICN 1
A particle moves in one dimension under the action of a conservative force.

(a) Show that the formal solution to the equation of motion is given by:
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where the particle is at x, at time t_,

A central force

is conservative.

(b) Show that the central force problem can be reduced to a purely radial
problem with the same formal solution as in part {a} except that the
potential V(r) is replaced by an “effective potential”.

(c) Describe the nature of the “effective potential” and from where the extra
potential terms arise.

(d) Derive a formal solution for the orbit of a particle in a central field using
the solution of part (a} as your starting point (i.e. express 8 in terms of 1.

P.T.0O.



QUESTION 2
Part A

For the damped harmonic oscillator, the equation of motion can be written as:
mx + cx + kx=0
(a) explain all terms in this equation.

The equation can be solved by finding the roots of the corresponding subsidiary
equation:
mo’ + cot + k=0

This results in three distinct solutions that represent three types of physical
behaviour: overdamping, critical damping and underdamping.

{b) Explain each of these modes of physical behaviour. Use sketches to
tllustrate the motion of the particle in each case.
Part B

A new physical system is designed having the following equation of motion:

mi+cx —kx =0

where m is the mass of a particle and ¢ and k are constants.

(c) From the corresponding subsidiary equation (or otherwise) find the
solution to this equation of motion (Hint: use the solution of the damped
harmonic oscillator as a guide).

{d) How many distinct types of solution and hence physical behaviour, does
this system exhibit? (i.e. does it have solutions that correspond to
“overdamping, critical damping and underdamping”?)

(e} Discuss the physical reasons for the difference in the physical behaviour
of this system compared with the damped harmonic osciliator.



