THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS

MID SESSION TEST - MAY 1997

PHYS2001 - MECHANICS AND COMPUTATIONAL PHYSICS

PHYS2999 - MECHANICS AND THERMAL PHYSICS

PAPER 1 - MECHANICS

Time allowed - 50 minutes

Total number of questions - 2

This paper may be retained by the candidate

The following equations are supplied as an aid to memory.

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a}$$

Damped Harmonic Motion

If
$$m\ddot{x} + c\dot{x} + kx = 0$$

then $x = Ae^{qt}$
where $q = -\gamma \pm (\gamma^2 - \omega_o^2)^{1/2}$
 $\gamma = c/2m$
 $\omega_o^2 = k/m$
 $\omega_d^2 = \omega_o^2 - \gamma^2$

Forced Harmonic Motion

If
$$m\ddot{x} + c\dot{x} + kx = F_o \cos \omega t$$

then $x = A \cos(\omega t - \phi)$
where $A = \frac{F_o}{\left[m^2(\omega_o^2 - \omega^2)^2 + c^2\omega^2\right]^{1/2}} = \frac{F_o}{m\left[\left(\omega_o^2 - \omega^2\right)^2 + 4\gamma^2\omega^2\right]^{1/2}}$
and $\tan \phi = \frac{c\omega}{m\left(\omega_o^2 - \omega^2\right)} = \frac{2\gamma\omega}{\left(\omega_o^2 - \omega^2\right)}$
resonance $\omega_r^2 = \omega_o^2 - 2\gamma^2$
 $Q = \frac{\omega_d}{2\gamma}$

Central Forces

Polar Coords
$$\mathbf{r} = (r, \theta)$$

$$\mathbf{v} = (\dot{r}, r\dot{\theta})$$

$$\mathbf{a} = (\ddot{r} - r\dot{\theta}^2, 2\dot{r}\dot{\theta} + r\ddot{\theta})$$

$$u = \frac{1}{r} \rightarrow \frac{d^2u}{d\theta^2} + u = -\frac{1}{mh^2u^2} f(u^{-1})$$

$$e = (r_z - r_p) / (r_a + r_p)$$

$$e = \frac{mh^2}{kr_p} - 1$$

$$h = \text{angular momentum / unit mass}$$

Apsidal angle
$$\psi = \pi \left(3 + a \frac{f'(a)}{f(a)}\right)^{-1/2}$$

Stability
$$f(a) + \frac{a}{3} f'(a) < 0$$

Inverse Square Law Orbits

$$V = -\frac{k}{r}$$

Gravitation

$$k = GMm$$

$$\dot{\theta} = hu^{2}$$

$$f(r) = -k/r = -\frac{GMm}{r^{2}}$$

$$e^{2} = \frac{a^{2} - b^{2}}{a^{2}}$$

$$e = (r_{a} - r_{p})/(r_{a} + r_{p})$$

$$e = \frac{mh^{2}}{kr_{p}} - 1$$

$$\tau = \frac{2\pi}{\sqrt{GM}} a^{3/2}$$

$$G = 6.67 \times 10^{-11} N m^{2} kg^{-2}$$

$$M_{sun} = 2 \times 10^{30} kg$$

$$M_{earth} = 6 \times 10^{24} kg$$

$$R_{earth} = 6400 km$$

Lagrange's Equations

$$L = T - V$$

$$\frac{d}{dt} \frac{\partial L}{2\dot{q}_{i}} - \frac{\partial L}{\partial q_{i}} = 0$$

Generalized momenta

$$p_{j} = \frac{\partial L}{\partial \dot{q}_{j}}$$

$$H = \sum p_{i}\dot{q}_{i} - L$$

$$\dot{q}_{i} = \frac{\partial H}{\partial p_{i}}, \dot{p}_{i} = -\frac{\partial H}{\partial q_{i}}$$

QUESTION 1

A particle moves in one dimension under the action of a conservative force.

(a) Show that the formal solution to the equation of motion is given by:

$$t - t_o = \int_{x_o}^{x} \frac{dx}{\sqrt{\left(\frac{2}{m}\right)\left(E - V(x)\right)}}$$

where the particle is at x_o at time t_o .

A central force

$$F = f(r)\,\hat{r}$$

is conservative.

- (b) Show that the central force problem can be reduced to a purely radial problem with the same formal solution as in part (a) except that the potential V(r) is replaced by an "effective potential".
- (c) Describe the nature of the "effective potential" and from where the extra potential terms arise.
- (d) Derive a formal solution for the orbit of a particle in a central field using the solution of part (a) as your starting point (i.e. express θ in terms of r).

QUESTION 2

Part A

For the damped harmonic oscillator, the equation of motion can be written as:

$$m\ddot{x} + c\dot{x} + kx = 0$$

(a) explain all terms in this equation.

The equation can be solved by finding the roots of the corresponding subsidiary equation:

$$m\alpha^2 + c\alpha + k = 0$$

This results in three distinct solutions that represent three types of physical behaviour: overdamping, critical damping and underdamping.

(b) Explain each of these modes of physical behaviour. Use sketches to illustrate the motion of the particle in each case.

Part B

A new physical system is designed having the following equation of motion:

$$m\ddot{x} + c\dot{x} - kx = 0$$

where m is the mass of a particle and c and k are constants.

- (c) From the corresponding subsidiary equation (or otherwise) find the solution to this equation of motion (Hint: use the solution of the damped harmonic oscillator as a guide).
- (d) How many distinct types of solution and hence physical behaviour, does this system exhibit? (i.e. does it have solutions that correspond to "overdamping, critical damping and underdamping"?)
- (e) Discuss the physical reasons for the difference in the physical behaviour of this system compared with the damped harmonic oscillator.