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Question 1

a) Your car is stopped on the side of a straight highway. The street is busy: many cars are going
past, all of them at 100 km per hour. It's a sunny day and the solar cells are clean, so assume that your
car accelerates at a constant rate a = 1.9 m.s−2 from zero until it reaches a final speed vf = 100 km per
hour. You need a long gap between cars to be able to accelerate to 100 km per hour to join the stream of
the traffic. In this question you will work out how long.

i) Sketch a displacement - time or x(t)  graph showing the position of a car accelerating from rest to
vf at constant acceleration a, and then continuing at constant speed vf.

ii) On the same graph, show the displacement of a following car. This is a car, which travels at a
constant speed vf at all times and which, when your car has finished accelerating, is a safe
distance L behind yours. Show L clearly on the graph.

iii) Below or above your displacement graph, and using the same scale for the time axis, sketch a
velocity - time (v(t)) graph for the two cars. Show vf on the graph.

iv) Some authorities judge that, in good conditions, the safe distance L between cars on a highway is
the distance travelled by a car in 2 seconds*. What is L for this case?

v) Assume that you start accelerating when the car ahead is a distance L in front of you and finish
accelerating when the car behind (which travels at constant speed vF) is a distance L behind you.
(It is not required, but it may help to draw the x(t) for the car ahead of yours, as well.)

Showing your working, calculate the minimum necessary distance between the car in front of
you and the car behind you.

b) With respect to the ground, the wind is blowing from the North East at speed vw = 15 km per
hour. You are bicycling South at speed  v (with respect to the ground).

i) Relative to you, the wind is coming directly from the East. Determine your speed v.

ii) Relative to a second cyclist, also travelling South, the wind is coming directly from the
SouthEast. Determine her speed (with respect to the ground).

*  A comment for street safety but not for marks. The safe distance is a minimum for good conditions. In poor visibility,

leave larger gaps. The timing requires judgment and the acceleration 1.9 m.s−2 over this distance is not always achievable.
Consider this calculation as an underestimate.
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iv) vf  =  100 km/hr = 
105 m
3600 s

=  28 m.s-1.
L  =  (2s).vf  =  56 m.

v) Distance d1 travelled by you while
accelerating:

2ad1  =  vf2 − 02

d1  =  vf2/2a
Time taken to reach vf:
t1  =  vf/a
Distance travelled by following car in

that time

d2  =  t1vf  =  vf2/a
Minimum initial separation between

you and following car
=  d2 − d1 + L

Add L for car in front: minimum gap  =  d2 −
d1 + 2L

=  vf2/2a + 2L
=  310 m.

 (which is why there are speed matching lanes on
freeway entrances)

Attention marker: some candidates may just
write somethink like
gap  =  d1 + 2L.
This gives the correct numerical value but
loses marks as indicated.

b)

  

v w

v'w

v
45°N

v w

v'w

v
45°N
45°

Let the relative wind velocity be v'w
vw  =  v + v'w as shown
v  =  vw sin 45°  =  15 km per hour * sin 45°

 =  11 km per hour.

As before, vw  =  v + v'w
v  =  2 vw sin 45°  =  21 km per hour.



Question 2
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The sketch represents a fairground ride called the Gravitron.
Jack and Jill stand against the inside, vertical wall of a
cylindrical chamber, radius r, that is initially stationary.
When the chamber rotates about its axis, Jack and Jill
discover that they need not touch the floor: the vertical wall
alone stops them from falling.
i) In several clear sentences and with the aid of at least

one vector diagram, explain the origin of the force
that stops Jack and Jill from falling.

ii) On your vector diagram, show the contact force that
the wall exerts on Jack.

iii) Derive an expression for the minimum angular
frequency ω that will suffice to stop them from
falling. The coefficients of kinetic and static friction
between the wall and their clothes are µk and µs.

iv) If r = 3.0 m,  µs = 0.28 and µk = 0.21, calculate the
minimum number of revolutions per minute that the
chamber must make to prevent them from falling.
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i) (Fairly complete answer.)
When the chamber rotates at constant angular velocity ω,
Jack is travelling in uniform circular motion and therefore is
accelerating with centripetal acceleration

ac  =  rω2

Because the axis is vertical, this centripetal vector is
horizontal. Therefore the total force on him is centripetal
and horizontal. The contact force is conceptually divided
into a normal component N and a friction component Ff.
The friction force must balance the weight, ie Ff  = −W, as
shown. Thus the total force is just the normal force, as

shown and N  =  mrω2r̂  . If ω is sufficiently large, then N is
large and so the friction (≤ µsN) may be large enough to
balance his weight.
i) (Minimal answer for full marks)
Because it is rotating, centripetal force is required on Jack,
and this is provided by the normal force from the wall. If
the normal force is big enough, friction can be big enough
to support his weight.
iii) For no relative motion,   Ff  ≤ µsN

W   ≤ µsN  =  ≤ µsΣF

mg  ≤ µsmac  =  µsmrω2.

ωmin2  =  
mg

µsmr

ωmin  =  √ g
µsr

iv) If r = 3.0 m,  µs = 0.28 and µk = 0.21, calculate the
minimum number of revolutions per minute that the
chamber must make to prevent them from falling.

fmin  =  
1
2π  ωmin  =  

1
2π √ g

µsr
    =  0.54 Hz

=  33 r.p.m.
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As a safety precaution, you decide to install a large spring
in the bottom of a lift shaft. (A lift is the same thing as an
elevator. The shaft is the volume in which it travels.) The
mass of the spring is negligible compared to the mass M of
the lift (and, happily, there are no passengers in the lift for
this problem). Assume that the spring constant is k, and the
spring obeys Hooke's law for the range considered in this
problem.
Suppose that bottom of the lift is a distance H above the
spring when the cable breaks, while the lift is travelling
downwards at speed vi. It then falls and hits the spring. Air
resistance and friction are negligible.
i) Explaining your reasoning, derive an expression for

the maximum compression xm of the spring. To
simplify the algebra, you may assume that H >> xm
and that d > xm.

ii) Briefly explain why the dimensions (or units) in
your equation are correct.

iii) When will the acceleration of the lift be greatest?
Explain your answer briefly. You may assume that
kxm > 2 Mg.

iv) Derive an expression for the greatest acceleration
amax in terms of the parameters of the problem.

v) Consider the case of a lift falling from rest from
height H above the spring. How long must d be so
that amax ≤ 5g? (Hint: use your results for (i) and
(iv))



Question 3
i) During both the fall and during the compression of the spring, non-conservative forces are negligible,

so mechanical energy is conserved.

Ki + Ui  =  Kf + Uf

Let's take the point of maximum compression of the spring as the zero for gravitational potential
energy. Maximum compression of the spring occurs when the lift is instantaneously stationary, so

1
2
  Mvi2  +  Mg(H+xm)  =  0 + 1

2
  kxm2         but  H >> xm,  so

1
2
  Mvi2  +  MgH  ≅   0 + 1

2
  kxm2

kxm2  =  Mvi2 + 2MgH

   xm  =  √M
k (vi2 + 2gH)

ii) Mv 2 and MgH both have dimensions of energy (or units of Joules), which is force times distance
(Newtons times metres). The spring constant k has dimensions of force per unit length, (units of
Newtons per metre), so the argument of the square root is

Force x distance
Force / distance   =  distance2    

 


 
has units of  

N*m
N.m-1  =  m2  ,

so the RHS has dimensions of distance (units of m), which is the same as the LHS.

iii) When the spring is compressed, the total upwards force on the lift will be

Σ F  =  Fspring − W  =  kx − Mg. At maximum compression, the force is

ΣF  =  kxm − Mg. (In practice, Mg << kxm. so only penalise 1 mark lost if −Mg omitted.)

(FYI but not required: We are given kxm > 2 Mg. Unless H is extremely small or unless the spring is very weak and also
very long, kxm will be > 2 Mg. We are told that H >> xmax, so the acceleration is greatest when the spring is most
compressed.)

iv) amax  =  
Fm
M    =  

k√M
k (vi2 + 2gH)   − Mg 

M     =  √k
M(vi2 + 2gH)    − g.

v) For vi  =  0,  amax ≤ 5g   implies that

√2kgH
M    ≤ 6g so rearranging gives       k  ≤ 18

 Mg
H

For maximum compression xm, using parts (i) and (iv) and vi  =  0,

   xm  =  √Mk  2gH   =  √MH
18Mg 2gH      =  

H
3

By the way, and not for marks, most lifts have emergency brakes, that are more practical than springs. However, the lift in the
physics building has a pair of springs under it. (Two  similar springs in parallel act like one spring of half the k, so the analysis
above applies.) Just looking at it, I estimate that xm ~ 40 cm



Question 4
A traffic accident investigator finds a scene represented by the following schematic. She makes the
following observations and deductions:
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Car A has skidded a distance dA along a side street before colliding with car B. Vehicle B has skidded a
distance dB along a main street before colliding with car A. Squashed together during the collision, the two
wrecked cars have skidded together, sideways but without rotating. They have skidded a distance dC, at an
angle θ to the main street and have come to rest together as shown. From the black marks left on the street,
we know that all four wheels on both vehicles skidded both before and after the collision. Neither street
has any slope.
The investigator assumes that the initial velocities v 0A and v 0B, before either vehicle started skidding, are
in the directions shown. For legal reasons, she wishes to calculate their magnitudes, v 0A and v 0B. The
masses of the cars A and B are mA and mB, respectively. The coefficients of static and kinetic friction
between the rubber and the street are µs and µk, respectively.

i) Explaining any assumptions and reasoning, derive an expression for the momentum p_ c of the two
cars together, after the collision, in terms of mA, mB, dC, g and the appropriate µ.

ii) Between the time when either of the cars begins to skid and the time when they come to rest, is there
any stage where conservation of mechanical energy is an appropriate approximation? If so, explain
when and why. If not, explain why not.

iii) Between the time of the cars beginning to skid and the time when they come to rest, is there any stage
where conservation of momentum is an appropriate approximation? If so, explain when and why. If
not, explain why not.

iv) Explaining any assumptions and reasoning, derive an expression for the speed v 0A of car A, before it
started skidding, in terms of parameters given in the sketch.

v) Explain in one clear sentence why there are skid marks before the collision?
(In practice, the wreckage usually rotates about a vertical axis, giving rise to loops and sometimes discontinuities in the

skid marks, but the principles are similar.)



Question 4
i) During the 8 wheel skid, there has been no vertical acceleration, so the normal force N equals the

combined weight (mA + mB)g. Because it is skidding, kinetic friction applies, so
FfC  =  µkN  =  µk(mA + mB)g

The frictional force is the only horizontal force, so the acceleration in the direction of the skid is

aC  =  − 
FfC

mA + mB
   =  −µkg, which is constant.

Under constant acceleration, distance travelled d satisfies  vf2 − vi2  =  2ad, so

0 − vCi 2  =  − 2aCdC, so the combined velocity vC after the collision  is

vCi  =  √2aCdC   =  √2µkgdC  . Therefore

p_ c  =  (mA + mB)√2µkgdC    at a direction of θ to the main street, as shown.

ii) No. Conservation of energy applies if non-conservative forces do no work. During the skids, friction
does negative work. During the collision, the forces that the work required to deform the cars are
non-conservative.

iii) Yes. During the collision, very large forces act between the cars (large enough to bend metal et c). In
comparison with these forces, and over the very short time of the collision, external forces are
negligible and so the momentum of the two car system is conserved.

iv) The collision occurs over a short time, during which the effects of external forces (weight, friction
etc) are negligible in comparison with the internal forces. Therefore, the total momentum of the
two cars is conserved.

p_ A + p_ B  =  p_ c
We take components in the North direction (North positive), and note that car B has no initial

momentum in the North direction.
− pA sin φ  =  − pc sin θ

mAvfA  =  pc 
sin θ
sin φ so vfA   =  

pc
mA

 
sin θ
sin φ 

While car A skids alone, the only horizontal force on it is friction and, by an argument like that in
part (i)

aA  =  − 
FfA
mA

   =  − 
µkN
mA

   =  −µkg,  which is constant, so

vfA 2 − v0A2  =  2aAdA

v0A2  =  vfA 2 − 2aAdA   =  
 


 
pc

mA
 
sin θ
sin φ  

2
 + 2µkgdA

using part (i) for pc, v0A  =  √2µkgdC  
(mA + mB)2 sin2 θ

mA2 sin2 φ
  + 2µkgdA 

  =  √2µkg 
 



 



dC  
(mA + mB)2 sin2 θ

mA2 sin2 φ
  + dA   simplification 

unnecessary.

v) The drivers have pushed too hard on the brakes and locked up the wheels.

(They would have decelerated at a greater rate if the wheels had been rolling, so that µs rather than  µk  applied.
Anti-lock braking systems would have helped.)



Question 5
a)
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An internal combustion engine (the motor in a car)
generates heat at a rate of 20 kW. It is cooled by water
that flows in a continuous circuit through a radiator and
the motor, as shown in the very simplified sketch. (The
radiator dissipates the heat because cool air is forced
through the radiator by a fan. This detail is not relevant to
our problem.)

The density of water is 1000 kg.m-3, its specific heat
capacity is 4.2 kJ.kg-1.K-1, its latent heat of vaporisation
is 2.3 MJ.kg-1 and it boils at 100°C.

i) If the temperature of the water going into the motor is 50°C and the temperature of the
water coming out of the motor is 85°C, what is the rate of flow of water through the
motor? (Express your answer in litres per minute.)

ii) Due to a malfunction, flow of the cooling system ceases. The motor comprises 110 kg of
a metal whose specific heat capacity is 0.43 kJ.kg-1.K-1, and it contains 3 litres of cooling
water. Assume that the motor and the water are all at the same temperature (this is a
severe oversimplification). The motor continues to produce heat at 20 kW, and loses it at
a negligible rate. Determine long does it take the temperature to rise from 85°C to 100°C.

iii) From the time when the water starts to boil, how long is it before the 3 litres of water is
all boiled away?

iv) Once the water is boiled away, what is the rate of temperature rise in the motor? Express
your answer in °C per minute.

b) i) For a gas, which is greater: the specific heat at constant volume cV or the specific heat at
constant pressure cP? Explain your answer in about four or five clear sentences.

ii) What is the difference between the internal energy of an ideal gas and the internal energy of
a non-ideal gas (for instance, a gas at high density)? Explain in about two clear sentences.



Question 5
a) i) Definition of specific heat: Q  =  cm∆T

m
t    =  

1
c∆T 

Q
t    =  

1
c∆T   P  =  

20 kW
4.2 kJ.kg-1.K-1 * (85 − 50) K

=  0.14 kg.s-1  1 litre of water has a mass of 1 kg, so

flow rate =  0.14 kg.s-1*
 


 
60 s

1 minute   =  8.2 litres per minute

ii) Q  =  (cwmw + cmmm)∆T

P  =  
Q
t     so

t  =  
Q
P   =  

(4.2 kJ.kg-1.K-1 * 3kg + 0.43 kJ.kg-1.K-1 * 110 kg)*15 K
20 kW

=  45 seconds
iii) Definition of latent heat: Q  =  mL

t  =  
Q
P   =  

mL
P    =  

3 kg * 2.3 MJ.kg-1
20 kW    =  350 s   (=  5.8 minutes)

iv) P  =  
Q
∆t   =  

cmmw*∆T
∆t      so

∆T
∆t    =  

P
cmmm

   =  0.42 K.s-1  =  25°C per minute.

b) i) cP > cV. At constant volume, no work is done by the gas, so all the heat added goes into
the internal energy U of the gas, and U is proportional to T. At constant pressure, the gas
expands when its temperature rises and so does work (pdV). Because of the first law of
thermodynamics (dQ = dU + dW), some of the heat added goes into work. So, to raise the
temperature and therefore U by the same amount, more heat must be added.

ii) In an ideal gas, the intermolecular forces are negligible, except during collisions, so no
energy is stored as potential energy, and all internal energy is kinetic. In a non-ideal gas
(where, at high density, the molecules are on average closer to each other), the
intermolecular forces and energies are non-negligible and some internal energy is stored in
that potential energy.


