[Marks 14]

A frictionless winding pulley at the top of a well is in the shape of a cylinder. The mass of the winding pulley is $m_{pulley} = 2 \text{ kg}$ and its radius is $\epsilon_{pulley} = 0.15 \text{ m}$.

There is a light rope wrapped round the pulley which is vertically connected to a bucket of mass mbucket = 1.5 kg so the bucket is free to

Initially the system is at rest and the bucket then drops down into the well.

The moment of inertia of a cylinder of mass M and radius R is I = $\,^{1}/_{2}$ MR 2 .

(a) Draw a sketch showing on the forces acting on the bucket and all the forces acting on the pulley.

- (b) (i) Write down an expression for the acceleration a of the bucket.
 (ii) Write down an expression for the angular acceleration α of the pulley.
 - (iii) Relate the acceleration a to the angular acceleration α.
 (i) Determine the tension T in the rope.
 - (ii) Determine the acceleration a of the bucket.
 - (iii) Determine the angular acceleration α of the pulley.
 Determine the torque τ acting on the pulley about the axis of rotation.

(ii) use
$$T_{\text{tot}} = T_{\text{conflet}} = T_{\text{conf}} : I_{\text{conflet}}$$

$$\times \frac{T_{\text{conflet}}}{T} = T_{\text{conflet}} : \frac{1}{2} \cdot \frac$$