Question 5 (Marks)

(a) Biot and Savart were able to write down a quantitative law to calculate B in more general cases where the wire is curved, circular, coiled etc. In differential form the law is

$$dB = \frac{\mu_0 I dl \hat{r}}{4\pi r^2}$$

The geometry relevant to this equation is given in the following sketch:

Each length element dl corresponds to a current element Idl which gives a contribution dB to the total magnetic field at a point.
The direction of dB is perpendicular to both dl and \hat{r}. It is very handy that the vector cross product gives us precisely what is needed to describe this: Any two vectors, say A and B generate a third vector C pointing perpendicular to the plane containing both A and B:

![Diagram showing vectors A, B, and C]

The length of C is given by $|C| = |A||B|\sin \theta$

Therefore $dl\times\hat{r}$ gives the direction of each contribution dB from respective current elements Idl

The dependence of B on distance r from the wire was deduced from experiment (by Pierre Simon Laplace 1749-1827) to be

$$dB \alpha \frac{1}{r^2}$$

The full result for dB, including constant (to balance units and provide consistency in the electromagnetic system) is

$$dB = \frac{\mu_0}{4\pi} \frac{Id\times\hat{r}}{r^2}$$

If we ignore the direction (vector) information in the above expression we have

$$dB = \frac{\mu_0}{4\pi} \frac{Id}{\sin \theta} \frac{1}{r^2}$$

To get the total B we sum up all the dBs by integrating over the spatial variables (we take the current outside the integral as it is assumed constant):

$$B = \frac{\mu_0 I}{4\pi} \int \frac{d\sin \theta}{r^2}$$
We want to find the sum of all contributions dB_x at P due to the current elements Idl at all positions around the ring. This is given by the integral around the entire loop. Each contribution to the total field due to element of current Idl is

$$dB = \mu_0 \frac{Idl \hat{r} \cdot r}{4\pi r^2}$$

where \hat{r} is the unit vector (length one unit) pointing from each Idl to point P and $|r|$ is the distance between each current element and the point P.

Notice that \hat{r}, and therefore r, are always perpendicular to Idl. This means that

$$Idl \hat{r} = Idl / \sin \theta = Idl / (\sin \theta = \sin 90^\circ = 1)$$

We also see from the geometry that distance r^2 is given by

$$r^2 = a^2 + x^2 \quad \Rightarrow \quad r = \sqrt{a^2 + x^2} \quad \text{(Pythagoras)}$$

Then,
\[|dB| = \frac{\mu_0 |d\hat{x}|}{4\pi} = \frac{\mu_0 |d\hat{l}|}{4\pi [a^2 + x^2]} \]

We note that the components of dB along the y-direction, dB_y will sum to zero:

\[dB_y = dB \sin \theta = dB \left(\frac{R}{\sqrt{a^2 + x^2}} \right) \]

\[= \frac{\mu_0}{4\pi} \left(\frac{|d\hat{l}|}{[a^2 + x^2]} \right) \left(\frac{R}{\sqrt{a^2 + x^2}} \right) \]

\[r^2 = a^2 + x^2 \quad = \sin \theta \]

and the total field in the x-direction (along axis) is

\[B_x = \oint dB_x = \oint \frac{\mu_0}{4\pi} \left(\frac{|d\hat{l}|}{[a^2 + x^2]} \right) \left(\frac{a}{\sqrt{a^2 + x^2}} \right) \]

\[= \oint \frac{\mu_0}{4\pi [a^2 + x^2]^{3/2}} |d\hat{l}| \]

Position x, ring radius a and current I are constants in the problem (along with \(\mu_0 \) and 4\(\pi \)) so that,
\[B_x = \frac{\mu_0 I a}{4\pi (a^2 + x^2)^{3/2}} \oint dl \]

and

\[\oint dl = 2\pi a \quad \text{(the circumference of the loop)} \]

so that

\[B_x = \frac{\mu_0}{4\pi} \frac{I a (2\pi a)}{(a^2 + x^2)^{3/2}} \]

\[= \frac{\mu_0}{2} \frac{Ia^2}{(a^2 + x^2)^{1/2}} \]

(c) Find the magnetic induction \(B \) due to the whole wire at the point \(X \) located at the centre of the arc, as shown.

\[\begin{array}{c}
\text{The total B-field at X can be found by adding the contribution from each of the two straight sections and the curved section.}
\\
\text{Each straight section } \Rightarrow \text{ equivalent to half an infinitely long straight wire: } B = \frac{1}{2} \left(\frac{\mu_0 I}{2\pi R} \right)
\\
\text{Curved section } \Rightarrow \text{ equivalent to one quarter of a circular loop: } B = \frac{1}{4} \left(\frac{\mu_0 I}{2R} \right)
\\
\therefore B_{\text{total}} = 2 \cdot \frac{1}{2} \left(\frac{\mu_0 I}{2\pi R} \right) + \frac{1}{4} \left(\frac{\mu_0 I}{2R} \right)
\\
= \left(\frac{1}{2\pi} \right) \frac{\mu_0 I}{R} + \frac{1}{8} \left(\frac{\mu_0 I}{R} \right)
\\
= \left(\frac{1}{2\pi} + \frac{1}{8} \right) \frac{\mu_0 I}{R} = 0.284 \left(\frac{\mu_0 I}{R} \right)
\end{array} \]