THE UNIVERSITY OF NEW SOUTH WALES
SCHOOL OF PHYSICS
PHYS 3510 ADVANCED MECHANICS, FIELDS AND CHAOS
MID-SESSION TEST - 11 SEPTEMBER 2008

Do both questions.
Both questions of equal marks.

FORMULA SHEET

Euler-Lagrange equations

\[
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_k} \right) - \frac{\partial L}{\partial q_k} = \sum_{i=1}^{m} \lambda_i \alpha_{ik} = Q_k
\]

Canonical Transformations

1) \(F_1(q,Q,t) \)
\[
p_i = \frac{\partial F_1}{\partial q_i} \quad P_i = -\frac{\partial F_1}{\partial Q_i} \quad K = H + \frac{\partial F_1}{\partial t}
\]

2) \(F_2(q,P,t) \)
\[
p_i = \frac{\partial F_2}{\partial q_i} \quad Q_i = \frac{\partial F_2}{\partial P_i} \quad K = H + \frac{\partial F_2}{\partial t}
\]

3) \(F_3(p,Q,t) \)
\[
q_i = -\frac{\partial F_3}{\partial p_i} \quad P_i = -\frac{\partial F_3}{\partial Q_i} \quad K = H + \frac{\partial F_3}{\partial t}
\]

4) \(F_4(p,P,t) \)
\[
q_i = -\frac{\partial F_4}{\partial p_i} \quad Q_i = \frac{\partial F_4}{\partial P_i} \quad K = H + \frac{\partial F_4}{\partial t}
\]

Poisson Bracket

\[
[u,v]_{q,p} = \sum_{x} \left(\frac{\partial u}{\partial q_k} \frac{\partial v}{\partial p_k} - \frac{\partial u}{\partial p_k} \frac{\partial v}{\partial q_k} \right)
\]

Mathematical identities

\[
\sin^2 Q + \cos^2 Q = 1 \quad \tan^2 Q + 1 = \sec^2 Q \quad 1 + \cos 2\phi = 2 \cos^2 \phi \quad 1 - \cos 2\phi = 2 \sin^2 \phi
\]

\[
\frac{d}{dx} \tan x = \sec^2 x \quad \frac{d}{dx} \cot x = \csc^2 x \quad \frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1-x^2}}
\]

\[
\frac{d}{dx} \cos^{-1} x = -\frac{1}{\sqrt{1-x^2}} \quad \frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2} \quad \frac{d}{dx} \cot^{-1} x = -\frac{1}{1+x^2}
\]
QUESTION 1. (7.5 marks)

a) Show that the transformation

\[
Q = \tan^{-1} \left(\frac{\alpha q}{p} \right) \quad \text{and} \quad P = \frac{\alpha q^2}{2} \left(1 + \frac{p^2}{\alpha^2 q^2} \right)
\]

is canonical. Rearrange the transformation equations to obtain

\[
q = \frac{p}{\alpha} \tan Q \quad \text{and} \quad P = \frac{p^2}{2\alpha} \sec^2 Q.
\]

b) Find the generating function for this transformation of type \(F_3(p,Q) \) using both of the relations

\[
q = -\frac{\partial F_3(p,Q)}{\partial p} \quad \text{and} \quad P = -\frac{\partial F_3(p,Q)}{\partial Q}.
\]

c) If the Hamiltonian is \(H(q,p) = p^2 + \alpha^2 q^2 \), find the new Hamiltonian generated by the transformation \(K(Q,P) \).

d) Find the infinitesimal contact transformation generated by the \(F_2(q,P) \) transformation

\[
F_2(q,P) = \sum_i q_i P_i + \varepsilon \sum_i \left(x_i p_{yi} - y_i p_{xi} \right)
\]

Consider only the coordinate components.

e) What is the physical interpretation of this infinitesimal contact transformation.
QUESTION 2. (7.5 Marks)

A heavy particle slides without friction on circular hoop of radius \(a \), under the influence of gravity. Use the method of Lagrange’s undetermined multipliers to obtain the equations of motion for the system in polar coordinates \((r, \theta)\).

The Euler-Lagrange equations are

\[
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_k} \right) - \frac{\partial L}{\partial q_k} = \sum_{i=1}^{m} \lambda_i a_{ik} = Q_k \quad k = 1, 2, \ldots, n.
\]

Show that the equations of motion are

\[
\frac{d}{dt} (mr^2) - mr\dot{\theta}^2 + mg \cos \theta = \lambda
\]

\[
\frac{d}{dt} (mr^2 \dot{\theta}) - mgr \sin \theta = 0
\]

Note that the kinetic energy in polar coordinates is

\[
T = \frac{m}{2} \left(\dot{r}^2 + r^2 \dot{\theta}^2 \right).
\]

Using the initial condition \(\dot{\theta} = 0 \) at \(\theta = 0 \), show that the Lagrange multiplier is given by

\[
\lambda = mg(3 \cos \theta - 2).
\]

When does the particle separate from the hoop?