Question 1. Heisenberg’s uncertainty principle (Marks 40).
 a. Formulate briefly the Heisenberg uncertainty principle. Outline, also very briefly its
 relation with the de Broglie relations.
 b. Assume that a particle of mass m propagates along the x-axis in the potential

 $\frac{U(x)}{2m} = \frac{k}{\sqrt{2n}} x^{2n}$

 (1)

 where k is a positive constant and $n \geq 1$ is an integer. Using Heisenberg’s uncertainty
 principle, estimate the ground state energy E, as well as the averaged kinetic and potential
 energies in this state.

 Hint. To simplify algebraic calculations one can choose units $\hbar = m = 1$. Then the only
 dimensional parameter left is k. If you still struggle with the algebra, keep in mind that up to
 a numerical factor the dependence of the energy on k (and m) can be recovered from simple
 dimensional analyses.

Question 2. Quantum oscillator (Marks 60).
 Consider the conventional quantum oscillator

 $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m \omega^2 \hat{x}^2}{2}$

 (2)

 a. Write down the expression for its energy spectrum E_n.

 Introduce the creation and annihilation operators

 $\hat{a}^+ = \frac{1}{\sqrt{2}} \left(\frac{x}{b} + \frac{b}{dx} \frac{a}{dx} \right)$

 (3)

 $\hat{a}^+ = \frac{1}{\sqrt{2}} \left(\frac{x}{b} - \frac{b}{dx} \frac{a}{dx} \right)$

 where $b = \sqrt{\hbar/m \omega}$ is the magnetic length (for the following calculations it can be
 convenient to choose units in which $b = 1$).

 b. Prove that the Hamiltonian (2) can be rewritten as follows

 $\hat{H} = \hbar \omega (\hat{a}^+ \hat{a} + \hat{\psi})$

 (4)

 Hint: remember the commutation relation

 $[\hat{a}, \hat{a}^+] = 1$

 (5)

 c. Find an explicit expression for the ground state wave function $\psi_0(x)$ of the Harmonic
 oscillator.

 Hint: Remember that Eq.(4) allows one to write the linear first order differential
 equation on $\psi_0(x)$, which solution is straightforward.

 d. Consider the Hamiltonian

 $\hat{H}_1 = \hbar \omega (\hat{a}^+ \hat{a} + \lambda \hat{a} + \lambda^* \hat{a}^+)$,

 (6)

 where λ is a complex-valued constant. Find the energy spectrum of \hat{H}_1.