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Note that the absorption coefficient is given by:
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where ¢p is the speed of light and n is the index of refraction of the material.
Jev is the joint density of states.

The imaginary part of the dielectric function of a material is proportional
to the absorption coefficient:
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(a) Why are optical transitions, i.e. transitions which can be observed by
spectroscopies using visible light, only vertical transitions in the band struc-
ture.

(b) What is the difference between a direct and an indirect semiconductor
and how does this influence the the electronic transition of a photolumine-
scence experiment.

(c) Photoluminescence on a direct semiconductor such as GaAs:

i) Briefly sketch the experimental setup of a photoluminescence experi-
P
t.

(ii) Explain all electronic transitions involved in a photoluminescence pro-
cess.

_ ~:(11—1). How can the intensity, i.e. transition probability, of the emitted photo-
luminescence light be derived? Explain all relevant terms of the equation.

(d) Explain the terms 'Van-Hove Singularity’ and *Joint Density of States’
briefly. Where do the Van Hove Singularities appear in the above given
band-structure of Silicon.

(e) The imaginary part of the dielectric function can be measured by optical
ellipsometry and is proportional to the absorption coefficient. Describe the
peaks in the above given imaginary part of the dielectric function ¢; in the
context of Van Hove singularities.



Question 1 (10 marks):

(a) Starting from the discrete electronic levels of well separated free elec-
trons, describe how the electronic bands in a solid are formed when the
distance between the atoms is reduced.

(b) Construction of the Hamilton operator of a solid: Explain the various
terms which contribute to the Hamilton operator of a solid. Which additio-
nal term has to be included if the material is ferromagnetic?

(c) Why is it problematic to solve the Schrédinger equation of a solid di-
rectly? Describe the various approximations, which are required to solve the
Schrédinger equation of the electronic system of a solid.

(d) The electronic band-structure of a solid like Silicon (see below) can be
calculated in the 'Weak Binding Limit’. Explain this technique briefly.

Bxplain why an how the electronic band-gap of a semiconductor changes
increasing temperature due to the lattice expansion.

Question 2 (10 marks):

The left part of the figure given below shows the band structure of Silicon
and the right side displays the imaginary part of the dielectric function of
Germanium (dielectric function: e(hw) = &, (hw) + ig;(hw)).
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Question 4 (10 marks):

(a) The Heisenberg model provides a microscopic approach to the physics
of magnetic materials with localized moments.

(i) Write down a Hamiltonian for this model and explain the meaning of all
terms and symbols.

(ii) In 1-2 pages explain what are spin-waves or 'magnons’. In your ans-
wer you should compare and contrast ferromagnets and antiferromagnets,
discuss the form of magnon energy spectra (dispersion curves), and the
consequence for low temperature thermodynamics. How can magnons be
observed and their energies measured?

(b) In a certain class of magnetic materials, the magnetic ions form 1-
dimensional structures as shown:

where the nearest neighbour interactions .J are ferromagnetic and the next-
nearest neighbour interactions .J' are antiferromagnetic . The interactions
between the chains are weak and can be neglected.

Consider a possible ordered state in which successive spins are canted by
an angle, as shown below (all spins are in the plane of the figure):
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(i) Assuming ’classsical’ vector spins of length S, write down an expression
for the energy per site, in terms of J, J', 6.

(ii) Minimize the expression with respect to 6 and briefly discuss the two
types of solutions.

(c)(i) Briefly explain the 'rigid-band’ model for 3d transition metals and
show how this can explain the occurrence of a non-integral moment per
site.

(ii) Fe and Ni have, respectively, 8 and 10 valence electrons to be distributed
over the 3d and 4s bands. Transport measurements show that the effective
4s electron configurations are 4s°% for Fe and 4s°° for Ni, and the atomic
moments at low temperature are 2.2up for Fe and 0.6up for Ni. Calculate
the occupancies for the 3d ’spin-up’ and ’spin-down’ bands for Fe and Ni
on the basis of the 'rigid band’ model.



Question 3 (10 marks):

(a) Insulating magnetic materials usually contain ions from two regions of
the/periodic table. Identify these and briefly discuss similarities and diffe-
rences between these two classes of magnets.

(b) A simple approach to describe the physics of magnetically ordered sy-
stems is via the 'mean-field’ or 'molecular field’ approach (MFA). Explain
the basic idea of the MFA (1-2 paragraphs, no mathematics) and discuss its
successes and failures.

(c) For a spin S = 1/2 ferromagnet MFA leads to the following equation for
the dimensionless magnetic moment per ion,

m = M/gupS
m = tanh(am + bB)

where, a = 2JS5%/kgT,b = gupS/ksT, with B the applied field, and the
other symbols have the usual meaning.

(i) Show how this equation can be solved graphically in zero applied field
and obtain an expression for the Curie temperature T in terms of the
parameters given.

(ii) Show that, as 7' — T—, the magnetization behaves as:

T 1/2
m ~ const. (1 — —)

Tc

(iii)\Show that, for T' > T¢, the zero-field susceptibility has the Curie-Weiss
form:

const.
X T-T,

(/m) Estimate the size of the molecular field in iron (7¢ ~ 1000 K).
(o

der of magnitude only).

The following may be needed:

1
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kg = 8.617-10"%¢V/K, pup=>5.788-10"%V/T



