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Question 1
Consider ground state of a Helium atom. Both electrons are in the 1s orbital state with the

wave function @1s(r). You do not need an explicit form of ¢y,(r).
A) Write down the two-electron wave function including both the orbital and the spin part.
Explain why spin of the ground state is zero.

Consider excited Helium atom. One of the electrons is in 1s state, and the second electron is
in the 2s state. The orbital wave functions of these states are ¢;4(r) and @a5(r). The total spin
in this case can be zero, S =0, or one, § = 1.

B) Write down two-electron wave functions in both cases. Show both the orbital and the spin
part of the wave functions.

Account for Coulomb interaction between electrons

62

V(1,2) =]
by perturbation theory and hence calculate the corresponding energy shift like expectation
value of the interaction over the wave function.

C) Calculate energy shifts for states with S =0 and S = 1 using wave functions found in the
part B). Express your answers in terms of integrals and clearly indicate which integral is called
the “direct interaction” and which integral is called the “exchange interaction”.

D) What is the energy splitting between the state with S = 0 and the state with 5 = 17
Express your answer in terms of the above integrals.

QQuestion 2
The Hamiltonian of a charged particle in static magnetic field is
_EAN2
= P—A”
2m

Consider a charged particle in an uniform magnetic field directed along the z-axis, B = (0,0, B),
and use a gauge with vector potential A = (0, Bz, 0).

A) Check that this vector potential corresponds to the magnetic field.

B) Perform separation of variables in Schroedinger equation and find the wave function of the
particle in a stationary quantum state.

C) Find the spectrum of the system (Landau levels).

You may use without proof the spectrum of 1D harmonic oscillator, H = g% -+ m“’: 2 6=

hw (n—|—%)
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Questions 3 and 4 have values 20 and 30 (from a total of 50 for part II).
Question 3. Relativistic equations,

i. Write down the Dirac equation for charged fermions in an external electromagnetic

field.
ii. Write down the fundamental algebraic relation, which defines the Dirac matrixes

y4, £4=0,1,2,3.
iii. Solve the Dirac equation for a free fermion with zero momentum p=0.
Hint: this task is simplified, if the following representation for the Dirac matrixes is

used
1 0 0 o
0
= , Y= , 3.1
4 [0 -1]7(—c 0] G.0
* How many energy levels are there?
* Are they degenerate or not ? Why ?
*  What is called the Dirac sea ?
* Why is it necessary to presume that fermions satisfy the Dirac
statistics?
iv. Prove that a matrix y,, which is defined
vs ==y’ (3.2)
anticommutes with any Dirac matrix »*, #=0,1,2,3, i.e. that
7rs=-rsrt (3.3)

Hint: it is almost a one-liner, if the fundamental relation for the Dirac matrixes (see
ii) is applied.

Question 4. Scattering problem.
Consider elastic scattering of a nonrelativistic particle by a spherically symmetric

potential U{r).

i. Perturbation theory
a. Give a definition of the scattering amplitude f(&).
b. Explain qualitatively what is called the first Born approximation.
¢. Explain how the first Born approximation is related to a general formulae
for the scattering amplitude, which reads

m
27h?
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fexp(-ik" D) U (") (1)’ (4.1)

where k,k' are the initial and the final wave vectors.



d. Assume that the potential has the form,
C
U(r)= —exp (—ur) (4.2)

where C, i are two constants.
Argue that the Born approximation is applicable in this problem, when
either Cissmall, or g is large.

Assuming that the Born approximation is applicable

¢ Calculate the scattering amplitude as a function of energy £ of the
incoming particle and scattering angle 4 .

e Calculate the scattering length.
Calculate the differential cross section

e Write down an expression for the total cross section (but do not
waist your time calculating the integral in it explicitly for arbitrary
energies).

o However, calculate the total cross section for zero energy.

Hint: you will need the formula

Ilexp(—yr+iq-r)d3r= —— 4.3)
-

fi. Scattering phases.

a. Calculate the scattering phases &,(k) as functions of the orbital

momentum / and the momentum % = 2mE of the incoming particle in the
potential
B
Ut =5~ (@.4)
where f is a constant, and m is a mass of the particle (which is introduced
in Eq.(4.4) to simplify the formulas).
b. Prove that the potential (4.4) must not be too attractive, i.e. S must satisfy
condition

B4, @.5)
Find the constant 8, > 0.

Hints. Keep in mind:
1. The wave function R,(r) in the /-th partial wave at large

distances behaves as

Rk,(r)—>—2-sin(kr—lfr/2+§,(k)), r—w (4.6)
r
2. The Laplacian for the /-th partial wave reads
a=a, 1D 4.7
¥

where A, =izi[ 2i{-) is its radial part.
ridr\ dr



3. Eq.(4.7) implies that for the given potential (4.4) the
Schrodinger equation c¢an be solved analytically
(introducing an effective orbital momentum L)



