
SOLUTIONS for PHYS3550, General Relativity,
Assignment 2 2013 Lecturer: John Webb

Consider the following four different metrics, as given by their line ele-
ments:

(1) ds2 = −dt2 + dx2 + dy2 + dz2

(2) ds2 = −(1− 2M/r)dt2 + (1− 2M/r)−1dr2 + r2(dθ2 + sin2 θdφ2) where M
is a constant.

(3)

ds2 = −∆− a2∆ sin2 θ

ρ2
dt2 − 2a

2Mr sin2 θ

ρ2
dtdφ

+
(r2 + a2)− a2∆ sin2 θ

ρ2
sin2 θdφ2 +

ρ2

∆
dr2 + ρ2dθ2

where M and a are constants, ∆ = r2− 2Mr+a2, and ρ2 = r2 +a2 cos2 θ

(4)

ds2 = −dt2 +R2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2

]
where k is a constant and R(t) is an abitrary function of t.

The metrics above are, in order, the SR, Schwarzschild, Kerr, and Robertson-
Walker metrics.

QUESTION (i) For each metric find as many conserved components pα of a
freely falling particle’s four momentum as possible.

ANSWER (i) If conserved, clearly it must be that dpα/dt = 0. The general
form of the geodesic equation (as given in part (iv)) is

m
dpβ
dτ

=
1

2
gνα,βp

νpα
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Since in general, pνpα 6= 0, the geodesic equation illustrates that if gνα,β = 0,
it must be that dpβ/dτ = 0.

(1) ds2 = −dt2 + dx2 + dy2 + dz2

gνα =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


and gνα,β = 0 for all β.
Thus all pβ are conserved in Euclidean space.

(2) ds2 = −(1− 2M/r)dt2 + (1− 2M/r)−1dr2 + r2(dθ2 + sin2 θdφ2), so

gνα =


−(1− 2M/r) 0 0 0

0 (1− 2M/r)−1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ


and there are 5 non-zero components of gνα,β (all the rest are zero):

gtt,r = −2M/r2

grr,r = 2M/(r − 2M)2

gθθ,r = 2r
gφφ,r = r sin2 θ
gφφ,θ = 2r sin θ cos θ
Thus pt, pφ are conserved.
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(3)

ds2 = −∆− a2∆ sin2 θ

ρ2
dt2 − 2a

2Mr sin2 θ

ρ2
dtdφ

+
(r2 + a2)− a2∆ sin2 θ

ρ2
sin2 θdφ2 +

ρ2

∆
dr2 + ρ2dθ2

where M and a are constants, ∆ = r2−2Mr+a2, and ρ2 = r2 +a2 cos2 θ.
This is the Kerr metric, and we know the symmetry is axial and not spheri-
cal. Inspecting the metric components above, we see that the coefficients of
dt2, dr2, dtdφ, dφ2, dθ2 are ALL functions of r and θ, i.e.
gtt,r, grr,r, gtφ,r, gφφ,r, gθθ,r 6= 0, and
gtt,θ, grr,θ, gtφ,θ, gφφ,θ, gθθ,θ 6= 0. All the rest are zero.
Thus pt, pφ are conserved.

(4) ds2 = −dt2 +R2(t)
[

dr2

1−kr2 + r2(dθ2 + sin2 θdφ2
]

where k is a constant and R(t) is an abitrary function of t.

For this metric, clearly
grr,t, grr,r 6= 0
gθθ,t, gθθ,r 6= 0
gφφ,t, gφφ,r, gφφ,θ 6= 0
Thus pφ is conserved.

QUESTION (ii) Put (1) in the form ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2)
From this argue that (2) and (4) are spherically symmetric.
Does this increase, decrease, or leave unchanged, the number of conserved
components pα?

ANSWER (ii) First part standard derivation, from lecture notes.

The spherical symmetry in the Cartesian form is obvious (ds2 is indepen-
dent on choice of reference frame orientation). (ii) and (iv) clearly have the
same form as ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2), varying only in their
coefficients. The spherical symmetry in all 3 metrics is therefore also clear.
For metric (i) in polar co-ordinates,
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gθθ,r = 2r
gφφ,r = 2r sin2 θ
gφφ,θ = 2r2 sin θ cos θ
Thus pt, pφ are conserved. In transforming from Cartesian to polar
co-ordinates, the number of conserved components is decreased from
4 to 2.

QUESTION (iii) It can be shown that for metrics (2)–(4), a geodesic which
begins with θ = π/2 and pθ = 0, i.e. one which begins tangent to the equa-
torial plane, always has θ = π/2 and pθ = 0.
For cases (2)–(4), use the equation −→p .−→p = −m2 to solve for pr in terms of
m, other conserved quantities, and known functions of position.

ANSWER (iii) −→p .−→p = −m2 = gαβp
αpβ.

Metric (2):
The non-zero components are:
gtt = −(1− 2M/r)
grr = (1− 2M/r)−1

gθθ = r2

gφφ = r2 sin2 θ
Since θ = π/2, sin2 θ = 1. And pθ = 0. Let A = (1− 2M/r) for simplicity.
Then

−m2 = −A(pt)2 + A−1(pr)2 + r2(pφ)2

Substitute and re-arrange to get

(pr)2 = A
[
A(pt)2 − r2(pφ)2 −m2

]
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Metric (3):
Here, ∆ = r2 − 2Mr + a2, and we now have cos θ = 0 so ρ2 = r2. Also
sin θ = 1. After a little algebra, the non-zero components then become:
gtt = −(1− 2M/r)
grr = (1− 2M/r + a2/r2)−1

gθθ = r2

gφφ = r2 + a2(1 + 2M/r)
gtθ = −4Ma/r
Now re-arrange the following equation for pr (the 2 terms in pθ vanish):

−m2 = gtt(p
t)2 + grr(p

r)2 + gφφ(pφ)2

i.e.

(pr)2 =
[
−m2 + (1− 2M/r)(pt)2 − [r2 + a2(1 + 2M/r)](pφ)2

]
(1−2M/r+a2/r2)

(which seems horrible so maybe I made a mistake somewhere..?)

Metric (4):
Following the same procedure, and letting B = R2(t)/(1− kr2)

−m2 = −(pt)2 +B(pr)2 +Br2(pφ)2

so

(pr)2 =
1

B

[
−m2 + (pt)2 −Br2(pφ)2

]

QUESTION (iv) For metric (4), spherical symmetry implies that if a geodesic
begins with pθ = pφ = 0, these remain zero. Use this together with the
general form of the geodesic equation

dpβ
dτ

=
1

2
gνα,βp

νpα

(see eq. 7.29 in Schultz), to show that that if k = 0, pr is a conserved quantity.

ANSWER (iv) We are specifically interested in
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2m
dpr
dτ

= gνα,rp
νpα

Dropping terms which are zero we are left only with

2m
dpr
dτ

= grr,r(p
r)2

Now grr = R2(1− kr)−1

so grr,r = R2k(1− kr)−2

but since k = 0, grr,r = 0, so pr is conserved.
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