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QUESTION 1 (15 marks)

The thermodynamic probability W for a system of distinguishable particles, in which each
level has an occupancy N, and a degeneracy g;, is
n "\']
g.
w N2
W N.H =
J=0 =g
The two constraints are:

ShEiay

=

/f (1) By minimising /n W subject to these constraints, with an appropriate choice of Lagrange
multipliers a and £, show that
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(6 marks)
1 Gi) By comparing the statistical definition of entropy with the thermodynamic definition,
P 4
demonstrate that f = —1/(ksT). (4 marks)

A

(iii) Use the first constraint to determine e”. (3 marks)

\—W) The expression above for N, is called the Boltzmann distribution. In other physical
situations we encounter the Maxwell-Boltzmann distribution, which looks formally the same.
In what way is a system described by the Maxwell-Boltzmann distribution physically
different from a system described by the Boltzmann distribution? (2 marks)



QUESTION 2 (15 marks)

Consider an ideal gas of particles of mass m. The Maxwell-Boltzmann distribution is
applicable here. Each level has occupancy N, and degeneracy g;.

(i) The thermodynamic probability W for the Maxwell-Boltzmann distribution takes the form

Use this expression and the statistical definition of entropy to determine the entropy S as a
function of the particle number N, partition function Z, and internal energy U. (5 marks)

(ii) The partition function Z for an ideal gas is:
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where V is the volume. Using the known expressions for the pressure p and internal energy U

‘

in terms of Z, evaluate p and U explicitly. (5 marks) F’ t,//‘/ 7

(iii) Use your results from (i) and (ii) to work out S, and show that the the entropy per mol,
given by s = S/n,, (ny, is the number of moles), satisfies

s=s,+RInV+c InT

Make sure you identify the constant s; and the molar heat capacity ¢, . (5 marks)



