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Part 1

Question 1 (20 marks)

Consider an electromagnetic wave propagating in vacuum (i.e., no sources).

(a) Explain the meaning of these equations
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for the system. Be sure to explain the meaning of each quantity appearing in the equations.

(b) Show that equation (1) can be derived from Maxwell’s equations.

(c) Suppose the electromagnetic wave under consideration is a plane wave with wave vector k.
Write down the corresponding F and B fields, and evaluate S explicitly.

Question 2 (20 marks)

(a) Consider the linear transformation
¥ = A aV,

What are the conditions on the matrix A for this to be a Lorentz transformation? Derive an
expression for the inverse transform A~! in terms of AT, the transpose of A.

(b) Show that the continuity equation,

5TV I=0,

can be derived from the field equation 0,F"* = uoJ".

(c) Suppose an inertial reference frame S’ is moving away from a frame S with velocity v in the
positive z; direction. If the observer in S measures a static charge distribution

. o'
p(Z) = Qexp (— - )

where ¢ = 1,2, 3, find the charge and current distributions as measured by the observer in
S’. Discuss the nonrelativistic limit of your result.

(Continued overleaf)



Part 2

Remember to use a new answer book for questions in Part 2.

Question 3 (20 marks)

The wave equation for a plane wave moving in the positive z-direction in a conducting medium is
given in the formula sheet. The solution is also given, and the equation for £ in a good conductor.

(a) By substituting the given solution in the wave equation, find the general equation for k, and
show it reduces to the given form in a good conductor.

L4
(b) If k = a+1f, find the values of @ and f in terms of py, €y, o and w. NB Vi= ( \7;)

(c) Find the limiting values of o and S for a very good conductor and for a very poor conductor.
(d) Find the skin depth in the conducting medium.

(e) Find the refractive index of the conducting medium.

Question 4 (20 marks)

(a) Explain the terms “retarded potential” and “Hertzian dipole”.

The E field from a short oscillating electric dipole, p = po coswt, at the origin and aligned along
the z axis, is given by

2 o R
E(r6.t) = —%Tsmgcos{w(t /o)) d,

where 7 is large compared to the size of the dipole, and to the wavelength of the radiation.

(b) Using the plane-wave approximation, valid for large r, write down the corresponding expres-
sion for B (both magnitude and direction). (Note that the direction of propagation, k, is
along t.)

(c) Hence, (i) find the Poynting vector for this radiation, and (ii) the total power radiated in all
directions.

(Continued overleaf)



Question 5 (20 marks)

(a) Starting from the boundary conditions for E, D, B and H at the boundary of two dielectrics,
and remembering that E = vB in a dielectric, show that the ratio of the reflected power to
the incident power for a wave at normal incidence from a vacuum onto a medium of refractive
index n and permeability u = po is

R— <n—1)2,
n-+1

(b) An observer, wearing polarising glasses to completely absorb horizontally polarised light, is
looking at light reflected from the surface of the sea at an angle of 45°. Calculate the ratio
of light intensity he sees with and without these glasses. (NB this is not the ratio to the
intensity of the incident light.) The refractive index of water is 1.33.

as given on the formula sheet.



Useful Formulae: PHYS3011/PHYS3230

€0 =28854x1072 Fm™! py=4rx10""Hm ! ¢=23x10% ms™!
Volume element = dzdydz = r2sinfdrdfde

4.3

Surface area of sphere = 47?2 Volume of sphere = 77

Divergence Theorem: \ V-AdV = \ A.dS (S is the surface enclosing V)
1% s

Stokes’ Theorem: \%Aﬂx\wv.mm = *M.P.& (L is the curve bounding S)
Vector identity: A x (BxC) = (A-C)B — (A-B)C

So: Vx (VXE) = V(V-E) - V2E

Also: V- (ExB)=B.(VxE) — E-(V xB)

V2 in spherical polar coordinates:

2
Ve = IH-W A\xmlmlv + t 0 Amwbw.m:v + : o

r2 Or or r25sin 6 50 r2sin% @ wﬂvm

Electrostatics:

d
Charge conservation: I = IMW

q= \ p dV (charge density) I= \ J.dSs = \ V-J dV (current density)
v s v

V-J=——(equation of continuity)

E field defined by: Fgp = ¢E

Coulomb’s Law: E = L 4 T
4eg 12
q 1
Gauss’s Law: P = [ EdS = = = — pdV
s €0 € Jv

V.-E=2£ (Gauss’s Law)

€0

[ Also, since E is conservative in electrostatics: VxE = 0]

Magnetism:

B field defined by: Fg = gv xB ie dF = dgvxB = IdlxB

No magnetic monopoles: V-B = 0
! 14 - /
Biot-Savart Law: dB = 22 fdlx £ = 0 80 v/x
4 r2 4 12
Ampere’s Law: &Hw dl = po(N)I = po [ J-dS
s
(where I = current enclosed)
VxB = ppJ (Ampere’s Law)
Faraday’s Law: £ = & E-dl = |%m. = aw \m B.dS
B
VXxE = |m®|ﬂ (Faraday’s Law)
Dielectric materials:
P = xeoE D=cE+P = (1+ x)eoE = ¢,6E

E field (and potential difference) is reduced by a factor €, in the bulk.
Energy density, u= 1e.60E? per unit volume = iE-D
Gauss's Law forD: [D-dS=gfree V D = pfree
At a boundary, E) and V are continuous (D, is continuous.)
Cavities in dielectrics: Ejpcal = Epuyx for a needle-shaped cavity;
Eiocat = Epux + P/eo for a disc-shaped cavity;

Eiocal = Epux + P/3¢y for a spherical cavity.

: s . -1
Clausius-Mossotti equation: o P - .
3€g € +2

Capacitance:

stored charge Q@ = CAV [C]
stored energy U = 1QAV = 1C(AV)? or 1Q?/C [J]

capacitance of parallel-plate capacitor is C = €,.¢9A/d [F]

capacitance of isolated sphere is C' = 47e g R [F|



DC Circuits: EM Waves:

O’E

Ohm’s Law: AV =IR resistance, R = pl/A () Wave equation for E in free space: V2E = tomo% ie ¢ = 1/y/poco

Kirchhoff’s Laws: (1) ¥I =0 at a junction

(2) TE—SIR = 0 around each loop (in a medium: v = 1/,/k-fo€r€0 = ¢/n, n = refractive index)

Solution: E = Epsin(kxz — wt) for monochromatic wave travelling in +ve

Joule heating: power dissipated, P = IAV = I?R = (AV)?/R (W]  fraston

Ohm’s law: J = 0B power dissipated/unit volume =J - B = oE? E, B and the direction of propagation k are mutually perpendicular:
Magnetic media: kE=0 kB=0 B=k«E BxB =k
B=puH+M) = po(1+xm)H = prucH ie H= w -M The direction of E is the direction of polarization of the E-M wave.
V-B=0, soV-H+V-M=0 Impedance of free space, Zp = % = /\WW = 377Q

Ampere’s law becomes: V x H = Jfree 1
Poynting vector: N (or S) = ExH = — (ExB) = E?/Z, = H?Z,
At a boundary, B| = B, and m_\_ = Hj %)

2
Inductance: NB: Wave number, k = Hﬁ Angular frequency, w = 27 f
Mutual inductance: ®; = Liols, Py = Lialy, Self inductance: ® = LI Phase velocity, up, = fA = M Group velocity v, = MIM
: N? :
Self Inductance of a solenoid: L = p,puq va A magnetic energy: U = 1LI? Malus’ Law: I(f) = I(0)cos?#@ for polarizers at relative angle 6.
Enerey density B, mugnetic il 5 L B> B.H Reflection and Refraction at interface between two dielectrics
T 2ppg 2
Reflection: 8, = 6;
Maxwell’s HQCNﬁOSm Refraction: nysin@; = nysinf;  (Snell’s Law)
T, & VacHum Critical angle: sin; = no/ny if ny > ngy
V.E = £ VxE = Immluw Fresnel Equations (pu, = 1)
€0 t
OE For E parallel T = o = (gt ) 605 0 ~ G080 = ten(fy — 0}
V-B =0 VxB = puJ + t%o@l I E; (ng/ni)cos; +cosf;  tan(f; + 6;)
¢ to the plane
Lorentz force law: F=q(E+vxB) S itze . B, _ 2cosb;
= E (na/n1) cosB; + cos b,
Maxwell’s equations in dielectric and magnetic media: E,. cosf; — (ny/ny)cos by sin(6; — 6;)
. For E perp r, = —= - _
V-D = p VxE = —-B E;  cosf; + (ng/ny) cosb; sin(6; + 6;)
to the plane
- E 2cosb;
V-B =0 VxH=J+ D incid, tf = L= L
of incidence = E;  cosb; + (na/nq) cosb;



Ifn=mns/n:

7 = 0 at the Brewster angle, §; = 6, where tanfp =n

2
n—1
At normal incidence (6; = 0), reflecting power, Ry = ﬁw_ =72 = Allv

n+1
NH 2 2 4in
To = —t° = nt* = ——— R+T)=1
0 Nw n AHszvw A + V
EM waves in a conducting medium
0’E OE O’E

Wave equation: Bz = oo rr + €0 1o T

Solution: E, = Eyexpi(kz—wt) with k% = dwuoo (k is complex)

k
Skin depth, 6 = A 2 v Effective (complex) refractive index n = re
LooW w
. L. E, 1—-n
Reflection from metal at normal incidence r = — = | —— | = -1
E; 1+n

Transmission Lines
(here L and C are the inductance and capacitance per unit length)

L
Characteristic impedance, Zy = {/ =

C

Wave velocity, v =

1
vVLC

Twin wires, separation b, each of radius a, C = $ L= taﬁto In(b/a)
for air/vacuum: Zp = 1201n(b/a) Q
2
Co-axial cable, radii a (inner) and b (outer), C = m% L= tm““o In(b/a)

for air/vacuum: Zy=601In(b/a) Q
€r€ob [ — Hrbod

a b

for air/vacuum: Zy = wqqm Q

Stripline: two conductors of width b, separation a, C =

. . 1 1 1
Waveguide equation y]w = y|w — @

Lorentz transformation equations for E and B:

If O' is moving with speed +V along z axis of O:

E. =E, mﬂu =v(Ey — VB;) E. =~(E, +VBy)
1% 14
B. = B, mw =v(By + MML B, =~(B, - nlmm@v
.m.m
B? = = and E - B are invariants.
Potentials:
Inside a solenoid of radius R, at distance a from the axis: A = m@w& é
IR? .
Outside the solenoid, A = % 1)
HHI4<IQ|> and B=V xA.
ot
1 0V
L t : A+ — =
orentz Gauge v + Z o 0
1 6%v _, p 1 6°A _,
— — — = — i, Rd— W .>. =
Anm ot? ¥ <v €o Anw ot? ¥ v Hod

Liénard-Wiechert potentials (from a moving charge):

1 qc
4meg (Re—R-v)

V(r,t) = and A(r,t) = oHn V(r,t) where R = r—r’

Electric Dipole Radiation:

—po w cos _ —Hopow

Ve, = sin wt’ Alx,t) = . sinwt’ %
r

4dmegre

Magnetic Dipole Radiation:

—pomowsin €

V(r,t)=0 A(r,t) = sinwt’ ¢

47re

NBt =t—|r—r1'|/c (Retarded time.)

In both cases, E is | to B, and both are 1. tor, and FE = cB.



Lorentz transformation for an inertial frame S’ moving with speed v in

the z! direction in the inertial frame S.

1 1

B= ¥
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Invariant interval and the Minkowski metric

ds? = Nuvdztdz”

-1 0 0 O
_ 0 1 0 0
Tw=1 "9 01 0
0 0 0 1
4-velocity and 4-momentum
dx*

b= —
u - &q- \%Aﬁv@ﬁvu
P =mut = Am.m‘v

(o

Relativistic electrodynamics

Je=(pe,d) B =0
v_ (¢ & Pt o
A IAni»v dr =aF
8 F"* = 1o J"
0
P grpr g ar = | EslC
—Ey/c
~E,/c

1 02

2 _ 72
O =0, = V* - 525

E./c Ey/c E,/c
0 B, -B,

B, 0 B,
B, -B, 0

= _FvH



