FINAL EXAMINATION
NOVEMBER 2015

Time Allowed — 2 hours
Total number of questions — 4
| All questions are of equal value

Answer all questions

be returned with your exam book.

Answers must be written in ink. Except where they are expre:
may only be used for drawing, sketching or graphical work.

Candidates may keep this paper.
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TRIPLE PRODUCTS
(1)  A:(BxC)=B:(CxA)=C:(AxB)

(2)  Ax(BxC)=B(A:C)-C(AB)
PRODUCT RULES

G)  V(fe)= fVg+gVf
4) V(A B)=A x(VxB)+Bx(VxA)+(A-V)B+(B
®)  V(fA)=f(V-A)+A-(Vf)

(6) V-(AxB)=B-(VxA)-A-(VxB)

(M Vx(fA)=f(VxA)-A x(Yf)

(8) Vx(AxB)=(B:-V)A-(A-V)B+A(V:B)-B(V-A)
SECOND DERIVATIVES
Q) V- (Vexy)=0
(10) Vx(VI)=0

(11) Vx(Vxv)=V(V:v)-V?v

b "
Gradient Theorem f ; (VT)-d1=T(b)-T(a) i

Divergence Theorem f (V- v)dr = gﬁ v-da
volume surface

Curl Theorem



Question 1 (25 marks)

Consider six point charges arranged as shown below.

(a) Calculate (i) the monopole moment and (ii) the dipole moment of t
charge distribution.

(b) Use your results from (a) to show that the electric potential due
this charge distribution at a point P very far away from the o
(i.e., 7 > a) is given approximately by

2
q 2a cos f
V(’-'):rm r[f+ +...],

r

~

where cosf = Z - 7.

(c) Calculate the corresponding electnc ﬁeld and expr S
spherical coordinates. i‘




Question 2 (25 marks)

Suppose that N turns of wire are tightl:
a ferromagnetic material with permeab
To, a circular cross section of radius a, a.ud a ne
shown below. A steady current Ip flows in the

L F.. o

inside the ferromagnetic material, B;, and the
air gap, Bg, satisfy

B'f =§§ =B$l

centre of the toroid.

bove, write do
b) Using the contour C shown a 5
2 the H ﬁeld mslde the ferromagnetic material,




Question 3 (25 marks)

Consider an infinitely long straight wire carryi
I1(t). Hanging off the wire is a rigid square wi

(a) Show that the electromotive force induced in the loop is given _byf'

_ ooy (o
8_21ru( b )dt

(b) Suppose the current I;(t) increases with time. What is the directi
of the current induced in the loop? Please justify you answer.

Lyl a+b\ d
E_Sfrln( b )E

has a cross-sectional area A.



Question 4 (25 marks)

Consider an electromagnetic wave propagating in free space, Its electric field ':'—:'.’.
component is given by '

E(z,t) = By sin(kz — wt) § + F; cos(kz — wt) 2

(a) Demonstrate explicitly that this expression satisfies all four of Maxwell’s
equations in free space.

(b) Compute the corresponding magnetic field (magnitude and direction).
Express it in terms of E, and E;.

(c) Compute the total energy density stored in the wave.

(d) Using the expression above, explain the terms (i) circular and (ii)
elliptical polarisation.




